1
|
Delic S, Miletic Drakulic S, Stepovic M, Milosavljevic J, Kovacevic Dimitrijevic M, Jovanovic K, Marinkovic I, Tepavcevic M, Janicijevic N, Mitrovic A, Igrutinovic D, Vulovic M. The Connection Between Oxidative Stress, Mitochondrial Dysfunction, Iron Metabolism and Microglia in Multiple Sclerosis: A Narrative Review. NEUROSCI 2025; 6:23. [PMID: 40137866 PMCID: PMC11944927 DOI: 10.3390/neurosci6010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
In recent years, in the pathogenesis of multiple sclerosis, emphasis has been placed on mitochondrial processes that influence the onset of the disease. Oxidative stress would be one of the consequences of mitochondrial dysfunction, and its impact on brain tissue is well described. Microglia, as a brain macrophage, have an important function in removing unwanted metabolites, as well as iron, which is an amplifier of oxidative stress. There are novelties in terms of the connection between these processes, which have redirected research more towards the process of neurodegeneration itself, so that the emphasis is no longer on neuroinflammation, which would initiate the pathological process itself and still exist in the vicinity of lesions with reduced intensity. The aim of this review is to summarize the current knowledge from the literature regarding oxidative stress, mitochondrial dysfunction and iron metabolism and how microglia are involved in these processes in multiple sclerosis.
Collapse
Affiliation(s)
- Simonida Delic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| | - Svetlana Miletic Drakulic
- Department of Neurology, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milos Stepovic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| | - Jovana Milosavljevic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| | - Marija Kovacevic Dimitrijevic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| | - Kristijan Jovanovic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| | - Ivona Marinkovic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| | - Melanija Tepavcevic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| | - Nikoleta Janicijevic
- Department of Hygiene and Ecology, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Aleksandra Mitrovic
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Danica Igrutinovic
- Department of Biochemistry, University Clinical Centre Kragujevac, 34000 Kragujevac, Serbia;
| | - Maja Vulovic
- Department of Anatomy, Faculty of Medical Sciences Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia; (M.S.); (J.M.); (M.K.D.); (K.J.); (I.M.); (M.T.); (M.V.)
| |
Collapse
|
2
|
Chien C, Heine J, Khalil A, Schlenker L, Hartung TJ, Boesl F, Schwichtenberg K, Rust R, Bellmann‐Strobl J, Franke C, Paul F, Finke C. Altered brain perfusion and oxygen levels relate to sleepiness and attention in post-COVID syndrome. Ann Clin Transl Neurol 2024; 11:2016-2029. [PMID: 38874398 PMCID: PMC11330224 DOI: 10.1002/acn3.52121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Persisting neurological symptoms after COVID-19 affect up to 10% of patients and can manifest in fatigue and cognitive complaints. Based on recent evidence, we evaluated whether cerebral hemodynamic changes contribute to post-COVID syndrome (PCS). METHODS Using resting-state functional magnetic resonance imaging, we investigated brain perfusion and oxygen level estimates in 47 patients (44.4 ± 11.6 years; F:M = 38:9) and 47 individually matched healthy control participants. Group differences were calculated using two-sample t-tests. Multivariable linear regression was used for associations of each regional perfusion and oxygen level measure with cognition and sleepiness measures. Exploratory hazard ratios were calculated for each brain metric with clinical measures. RESULTS Patients presented with high levels of fatigue (79%) and daytime sleepiness (45%). We found widespread decreased brain oxygen levels, most evident in the white matter (false discovery rate adjusted-p-value (p-FDR) = 0.038) and cortical grey matter (p-FDR = 0.015). Brain perfusion did not differ between patients and healthy participants. However, delayed patient caudate nucleus perfusion was associated with better executive function (p-FDR = 0.008). Delayed perfusion in the cortical grey matter and hippocampus were associated with a reduced risk of daytime sleepiness (hazard ratio (HR) = 0.07, p = 0.037 and HR = 0.06, p = 0.034). Decreased putamen oxygen levels were associated with a reduced risk of poor cognitive outcome (HR = 0.22, p = 0.019). Meanwhile, lower thalamic oxygen levels were associated with a higher risk of cognitive fatigue (HR = 6.29, p = 0.017). INTERPRETATION Our findings of lower regional brain blood oxygen levels suggest increased cerebral metabolism in PCS, which potentially holds a compensatory function. These hemodynamic changes were related to symptom severity, possibly representing metabolic adaptations.
Collapse
Affiliation(s)
- Claudia Chien
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Josephine Heine
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Ahmed Khalil
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Lars Schlenker
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Tim J. Hartung
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Fabian Boesl
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Katia Schwichtenberg
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Rebekka Rust
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Judith Bellmann‐Strobl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Christiana Franke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Finke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
3
|
Zengin G, Leyva-Jiménez FJ, Fernández-Ochoa Á, Bouyahya A, Yildiztugay E, Carretero AS, Mahomoodally MF, Ponniya SKM, Nilofar, Koyuncu I, Yüksekdağ Ö, Cádiz-Gurrea MDLL. UHPLC-ESI-QTOF-MS metabolite profiles of different extracts from Pelargonium endlicherianum parts and their biological properties based on network pharmacological approaches. Arch Pharm (Weinheim) 2024; 357:e2300728. [PMID: 38314893 DOI: 10.1002/ardp.202300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
In the present study, we aimed to investigate the chemical profiles and biological activities of different extracts (ethyl acetate, dichloromethane, ethanol, and water) of Pelargonium endlicherianum parts (aerial parts and roots). Free radical scavenging, reducing power, phosphomolybdenum, and metal chelating were assayed for antioxidant properties. To detect enzyme inhibitory properties, cholinesterase, amylase, glucosidase, and tyrosinase were chosen as target enzymes. The ethanol extract of the aerial parts contained higher amounts of total bioactive compounds (120.53 mg GAE/g-24.46 mg RE/g). The ethanol and water extracts of these parts were tentatively characterized by UHPLC-ESI-QTOF-MS and 95 compounds were annotated. In addition, the highest acetylcholiesterase (3.74 mg GALAE/g) and butyrylcholinesterase (3.92 mg GALAE/g) abilities were observed by the ethanol extract of roots. The water extract from aerial parts exhibited the most pronounced inhibitory effects on multiple cancer cell lines, especially A549 (IC50: 23.2 µg/mL) and HT-29 (IC50: 27.43 µg/mL) cells. Using network pharmacology, P. endlicherianum compounds were studied against cancer, revealing well-connected targets such as epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase (PI3K), AKT, receptor tyrosine-protein kinase erbB-2, and growth factor receptor bound protein 2 (GRB2) with significant impact on cancer-related pathways. The results could open a new path from natural treasure to functional applications with P. endlicherianum and highlight a new study on other uninvestigated Pelargonium species.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Francisco Javier Leyva-Jiménez
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ciudad Real, Spain
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, Granada, Spain
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Evren Yildiztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Antonio Segura Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, Granada, Spain
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Özgür Yüksekdağ
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | | |
Collapse
|
4
|
Prasuhn J, Schiefen T, Güber T, Henkel J, Uter J, Steinhardt J, Wilms B, Brüggemann N. Levodopa Impairs the Energy Metabolism of the Basal Ganglia In Vivo. Ann Neurol 2024; 95:849-857. [PMID: 38366778 DOI: 10.1002/ana.26884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE One proposed mechanism of disease progression in Parkinson's disease includes the interplay of endogenous dopamine toxicity and mitochondrial dysfunction. However, the in-vivo effects of exogenous dopamine administration on cerebral bioenergetics are unknown. METHODS We performed a double-blinded, cross-over, placebo-controlled trial. Participants received either 200/50 mg levodopa/benserazide or a placebo and vice versa on the second study visit. Clinical assessments and multimodal neuroimaging were performed, including 31phosphorus magnetic resonance spectroscopy of the basal ganglia and the midbrain. RESULTS In total, 20 (6 female) patients with Parkinson's disease and 22 sex- and age-matched healthy controls (10 female) were enrolled. Treatment with levodopa/benserazide but not with placebo resulted in a substantial reduction of high-energy phosphorus-containing metabolites in the basal ganglia (patients with Parkinson's disease: -40%; healthy controls: -39%) but not in the midbrain. There were no differences in high-energy phosphorus-containing metabolites for patients with Parkinson's disease compared to healthy controls in the OFF state and treatment response. INTERPRETATION Exogenously administered levodopa/benserazide strongly interferes with basal ganglia high-energy phosphorus-containing metabolite levels in both groups. The lack of effects on midbrain levels suggests that the observed changes are limited to the site of dopamine action. ANN NEUROL 2024;95:849-857.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig Holstein, Campus, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | - Tanja Schiefen
- Department of Neurology, University Medical Center Schleswig Holstein, Campus, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Theresia Güber
- Department of Neurology, University Medical Center Schleswig Holstein, Campus, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Julia Henkel
- Department of Neurology, University Medical Center Schleswig Holstein, Campus, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jan Uter
- Department of Neurology, University Medical Center Schleswig Holstein, Campus, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Julia Steinhardt
- Department of Neurology, University Medical Center Schleswig Holstein, Campus, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Britta Wilms
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Munich, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig Holstein, Campus, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Prasuhn J, Henkel J, Algodon SM, Uter J, Rosales RL, Klein C, Steinhardt J, Diesta CC, Brüggemann N. Neuroenergetic Changes in Patients with X-Linked Dystonia-Parkinsonism and Female Carriers. Mov Disord Clin Pract 2024; 11:550-555. [PMID: 38404049 PMCID: PMC11078482 DOI: 10.1002/mdc3.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND X-linked dystonia-parkinsonism (XDP) is a rare movement disorder characterized by profound neurodegeneration in the basal ganglia. The molecular consequences and the bioenergetic state of affected individuals remain largely unexplored. OBJECTIVES To investigate the bioenergetic state in male patients with XDP and female carriers using 31phosphorus magnetic resonance spectroscopy imaging and to correlate these findings with clinical manifestations. METHODS We examined the levels of high-energy phosphorus-containing metabolites (HEP) in the basal ganglia and cerebellum of five male patients with XDP, 10 asymptomatic female heterozygous carriers, and 10 SVA-insertion-free controls. RESULTS HEP levels were reduced in the basal ganglia of patients with XDP (PwXDP) compared to controls, but increased in the cerebellum of both male patients and female carriers. CONCLUSIONS Our findings suggest a potential compensatory mechanism in the cerebellum of female carriers regardless of sex. Our study highlights alterations in HEP levels in PwXDP patients and female carriers.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of NeurologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Julia Henkel
- Department of NeurologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | | - Jan Uter
- Department of NeurologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Raymond L. Rosales
- Department of Neurology and PsychiatryUniversity of Santo ThomasManilaPhilippines
| | | | - Julia Steinhardt
- Department of NeurologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
| | - Cid C. Diesta
- Makati Medical CenterMakati CityPhilippines
- Asian Hospital and Medical CenterManilaPhilippines
| | - Norbert Brüggemann
- Department of NeurologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| |
Collapse
|
6
|
Prasuhn J, Xu J, Hua J, van Zijl P, Knutsson L. Exploring neurodegenerative disorders using advanced magnetic resonance imaging of the glymphatic system. Front Psychiatry 2024; 15:1368489. [PMID: 38651012 PMCID: PMC11033437 DOI: 10.3389/fpsyt.2024.1368489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
The glymphatic system, a macroscopic waste clearance system in the brain, is crucial for maintaining neural health. It facilitates the exchange of cerebrospinal and interstitial fluid, aiding the clearance of soluble proteins and metabolites and distributing essential nutrients and signaling molecules. Emerging evidence suggests a link between glymphatic dysfunction and the pathogenesis of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. These disorders are characterized by the accumulation and propagation of misfolded or mutant proteins, a process in which the glymphatic system is likely involved. Impaired glymphatic clearance could lead to the buildup of these toxic proteins, contributing to neurodegeneration. Understanding the glymphatic system's role in these disorders could provide insights into their pathophysiology and pave the way for new therapeutic strategies. Pharmacological enhancement of glymphatic clearance could reduce the burden of toxic proteins and slow disease progression. Neuroimaging techniques, particularly MRI-based methods, have emerged as promising tools for studying the glymphatic system in vivo. These techniques allow for the visualization of glymphatic flow, providing insights into its function under healthy and pathological conditions. This narrative review highlights current MRI-based methodologies, such as motion-sensitizing pulsed field gradient (PFG) based methods, as well as dynamic gadolinium-based and glucose-enhanced methodologies currently used in the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jiadi Xu
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Jun Hua
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Peter van Zijl
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Linda Knutsson
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
8
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and Mitochondrial Dysfunction in Parkinson's Disease: Connecting Neuroimaging with Pathophysiology. Antioxidants (Basel) 2023; 12:1411. [PMID: 37507950 PMCID: PMC10375976 DOI: 10.3390/antiox12071411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
There is a pressing need for disease-modifying therapies in patients suffering from neurodegenerative diseases, including Parkinson's disease (PD). However, these disorders face unique challenges in clinical trial designs to assess the neuroprotective properties of potential drug candidates. One of these challenges relates to the often unknown individual disease mechanisms that would, however, be relevant for targeted treatment strategies. Neuroinflammation and mitochondrial dysfunction are two proposed pathophysiological hallmarks and are considered to be highly interconnected in PD. Innovative neuroimaging methods can potentially help to gain deeper insights into one's predominant disease mechanisms, can facilitate patient stratification in clinical trials, and could potentially map treatment responses. This review aims to highlight the role of neuroinflammation and mitochondrial dysfunction in patients with PD (PwPD). We will specifically introduce different neuroimaging modalities, their respective technical hurdles and challenges, and their implementation into clinical practice. We will gather preliminary evidence for their potential use in PD research and discuss opportunities for future clinical trials.
Collapse
Affiliation(s)
- Benjamin Matís Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Jett S, Boneu C, Zarate C, Carlton C, Kodancha V, Nerattini M, Battista M, Pahlajani S, Williams S, Dyke JP, Mosconi L. Systematic review of 31P-magnetic resonance spectroscopy studies of brain high energy phosphates and membrane phospholipids in aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1183228. [PMID: 37273652 PMCID: PMC10232902 DOI: 10.3389/fnagi.2023.1183228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Many lines of evidence suggest that mitochondria have a central role in aging-related neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial dysfunction, cerebral energy dysmetabolism and oxidative damage increase with age, and are early event in AD pathophysiology and may precede amyloid beta (Aβ) plaques. In vivo probes of mitochondrial function and energy metabolism are therefore crucial to characterize the bioenergetic abnormalities underlying AD risk, and their relationship to pathophysiology and cognition. A majority of the research conducted in humans have used 18F-fluoro-deoxygluose (FDG) PET to image cerebral glucose metabolism (CMRglc), but key information regarding oxidative phosphorylation (OXPHOS), the process which generates 90% of the energy for the brain, cannot be assessed with this method. Thus, there is a crucial need for imaging tools to measure mitochondrial processes and OXPHOS in vivo in the human brain. 31Phosphorus-magnetic resonance spectroscopy (31P-MRS) is a non-invasive method which allows for the measurement of OXPHOS-related high-energy phosphates (HEP), including phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi), in addition to potential of hydrogen (pH), as well as components of phospholipid metabolism, such as phosphomonoesters (PMEs) and phosphodiesters (PDEs). Herein, we provide a systematic review of the existing literature utilizing the 31P-MRS methodology during the normal aging process and in patients with mild cognitive impairment (MCI) and AD, with an additional focus on individuals at risk for AD. We discuss the strengths and limitations of the technique, in addition to considering future directions toward validating the use of 31P-MRS measures as biomarkers for the early detection of AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Vibha Kodancha
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michael Battista
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
10
|
Jett S, Dyke JP, Boneu Yepez C, Zarate C, Carlton C, Schelbaum E, Jang G, Pahlajani S, Williams S, Diaz Brinton R, Mosconi L. Effects of sex and APOE ε4 genotype on brain mitochondrial high-energy phosphates in midlife individuals at risk for Alzheimer's disease: A 31Phosphorus MR spectroscopy study. PLoS One 2023; 18:e0281302. [PMID: 36787293 PMCID: PMC9928085 DOI: 10.1371/journal.pone.0281302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Age, female sex, and APOE epsilon 4 (APOE4) genotype are the three greatest risk factors for late-onset Alzheimer's disease (AD). The convergence of these risks creates a hypometabolic AD-risk profile unique to women, which may help explain their higher lifetime risk of AD. Less is known about APOE4 effects in men, although APOE4 positive men also experience an increased AD risk. This study uses 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) to examine effects of sex and APOE4 status on brain high-energy phosphates [adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi)] and membrane phospholipids [phosphomonoesters (PME), phosphodiesters (PDE)] in 209 cognitively normal individuals at risk for AD, ages 40-65, 80% female, 46% APOE4 carriers (APOE4+). Women exhibited lower PCr/ATP and PCr/Pi levels than men in AD-vulnerable regions, including frontal, posterior cingulate, lateral and medial temporal cortex (multi-variable adjusted p≤0.037). The APOE4+ group exhibited lower PCr/ATP and PCr/Pi in frontal regions as compared to non-carriers (APOE4-) (multi-variable adjusted p≤0.005). Sex by APOE4 status interactions were observed in frontal regions (multi-variable adjusted p≤0.046), where both female groups and APOE4+ men exhibited lower PCr/ATP and PCr/Pi than APOE4- men. Among men, APOE4 homozygotes exhibited lower frontal PCr/ATP than heterozygotes and non-carriers. There were no significant effects of sex or APOE4 status on Pi/ATP and PME/PDE measures. Among midlife individuals at risk for AD, women exhibit lower PCr/ATP (e.g. higher ATP utilization) and lower PCr/Pi (e.g. higher energy demand) than age-controlled men, independent of APOE4 status. However, a double dose of APOE4 allele shifted men's brains to a similar metabolic range as women's brains. Examination of brain metabolic heterogeneity can support identification of AD-specific pathways within at-risk subgroups, further advancing both preventive and precision medicine for AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Grace Jang
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
11
|
Jett S, Dyke JP, Andy C, Schelbaum E, Jang G, Boneu Yepez C, Pahlajani S, Diaz I, Diaz Brinton R, Mosconi L. Sex and menopause impact 31P-Magnetic Resonance Spectroscopy brain mitochondrial function in association with 11C-PiB PET amyloid-beta load. Sci Rep 2022; 12:22087. [PMID: 36543814 PMCID: PMC9772209 DOI: 10.1038/s41598-022-26573-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence implicates sex and endocrine aging effects on brain bioenergetic aging in the greater lifetime risk of Alzheimer's disease (AD) in women. We conducted 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) to assess the impact of sex and menopause on brain high-energy phosphates [adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi)] and membrane phospholipids [phosphomonoesters/phosphodiesters (PME/PDE)] in 216 midlife cognitively normal individuals at risk for AD, 80% female. Ninety-seven participants completed amyloid-beta (Aβ) 11C-PiB PET. Women exhibited higher ATP utilization than men in AD-vulnerable frontal, posterior cingulate, fusiform, medial and lateral temporal regions (p < 0.001). This profile was evident in frontal cortex at the pre-menopausal and peri-menopausal stage and extended to the other regions at the post-menopausal stage (p = 0.001). Results were significant after multi-variable adjustment for age, APOE-4 status, midlife health indicators, history of hysterectomy/oophorectomy, use of menopause hormonal therapy, and total intracranial volume. While associations between ATP/PCr and Aβ load were not significant, individuals with the highest Aβ load were post-menopausal and peri-menopausal women with ATP/PCr ratios in the higher end of the distribution. No differences in Pi/PCr, Pi/ATP or PME/PDE were detected. Outcomes are consistent with dynamic bioenergetic brain adaptations that are associated with female sex and endocrine aging.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Grace Jang
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ivan Diaz
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232213678. [PMID: 36430157 PMCID: PMC9696602 DOI: 10.3390/ijms232213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The underlying causes of Parkinson's disease are complex, and besides recent advances in elucidating relevant disease mechanisms, no disease-modifying treatments are currently available. One proposed pathophysiological hallmark is mitochondrial dysfunction, and a plethora of evidence points toward the interconnected nature of mitochondria in neuronal homeostasis. This also extends to iron and neuromelanin metabolism, two biochemical processes highly relevant to individual disease manifestation and progression. Modern neuroimaging methods help to gain in vivo insights into these intertwined pathways and may pave the road to individualized medicine in this debilitating disorder. In this narrative review, we will highlight the biological rationale for studying these pathways, how distinct neuroimaging methods can be applied in patients, their respective limitations, and which challenges need to be overcome for successful implementation in clinical studies.
Collapse
Affiliation(s)
- Benjamin Matis Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
13
|
Mantle D, Hargreaves IP. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int J Mol Sci 2022; 23:12603. [PMID: 36293457 PMCID: PMC9604531 DOI: 10.3390/ijms232012603] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multisystem atrophy, and progressive supranuclear palsy. This article is concerned specifically with mitochondrial dysfunction as defined by reduced capacity for ATP production, the role of depleted levels of key nutritionally related metabolites, and the potential benefit of supplementation with specific nutrients of relevance to normal mitochondrial function in the above neurodegenerative disorders. The article provides a rationale for a combination of CoQ10, B-vitamins/NADH, L-carnitine, vitamin D, and alpha-lipoic acid for the treatment of the above neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|