1
|
Wang Y, Li P, Yin F, Zheng Y, Liu H, Sun H, Wang M, Liu C, Chen X, Yan G, Yan X, Hu Y, Guan S, Wang X. Urine Metabolomics Reveals the Intervention Effects and Mechanism of Shenhua Tablets in IgA Nephropathy. Biomed Chromatogr 2025; 39:e70078. [PMID: 40195069 DOI: 10.1002/bmc.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Shenhua tablets (SHT), a traditional Chinese medicine (TCM), have shown significant clinical efficacy in treating IgA nephropathy (IgAN), but the underlying mechanisms are not fully understood. This study aims to elucidate the renoprotective effects of SHT on IgAN and explore the potential mechanisms of its action using metabolomics approaches. The renoprotective effects of SHT on IgAN were evaluated in a Thy-1 antibody-induced IgAN rat model. Metabolomics techniques were employed to detect and analyze urine biomarkers of IgAN, and to identify SHT targets and metabolic pathways. SHT significantly reduced the levels of 24-h urine protein (Upro), albumin-to-creatinine ratio (ACR), Interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), alleviated kidney tissue damage, and inhibited mesangial cell proliferation. Seventeen urine metabolites were identified as biomarkers for IgAN, 14 of which were restored by SHT. SHT primarily modulated metabolic pathways, including the tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, pyruvate metabolism, and β-alanine metabolism, upregulating citric acid and succinic acid while downregulating pyruvic acid, L-lactic acid, uracil, and malonic semialdehyde. SHT exerts renoprotective effects in IgAN by modulating key metabolic pathways and normalizing abnormal metabolites levels.
Collapse
Affiliation(s)
- Yuhang Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ping Li
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zheng
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Huiqiang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiangmei Chen
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaotong Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Hu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shihan Guan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Nephrology First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
2
|
Shirvani A, Shirvani P, Jonah U, Moore BE, Holick MF. Suspected Mitochondrial Dysfunction and Complex Pathophysiology in Fatal Hypermobile Ehlers-Danlos Syndrome: Insights from a Case Report and Post-Mortem Findings. Biomedicines 2025; 13:469. [PMID: 40002882 PMCID: PMC11852713 DOI: 10.3390/biomedicines13020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Hypermobile Ehlers-Danlos Syndrome (hEDS) is a complex connective tissue disorder with multi-systemic manifestations that significantly impact quality of life. This case report investigates the clinical course and molecular mechanisms of advanced hEDS through an in-depth case study and post-mortem findings. Methods: The clinical history of a 24-year-old patient with advanced hEDS was analyzed, focusing on progressive complications across multiple systems. Post-mortem examination and genetic analysis were performed to elucidate the underlying pathophysiology. Results: The patient's clinical course was marked by gastrointestinal, neurological, and immune complications requiring numerous surgical interventions. Post-mortem findings revealed severe gastrointestinal dysmotility and Alzheimer's Type II astrocytes. Genetic analysis identified variants in mtDNA genes ATP6, CYB, and ND, suggesting a potential role of impaired mitochondrial function in hEDS pathogenesis but requiring further validation through functional studies. Conclusions: This case report provides valuable insights into the potential role of mitochondrial dysfunction in advanced hEDS and highlights the need for further research in this area. Future studies should include comprehensive functional assays, longitudinal tissue sampling, family genetic analyses, and muscle biopsies to better understand the complex interplay between genetic factors, mitochondrial function, and clinical manifestations in hEDS. Establishing genetic bases and developing targeted therapies addressing both structural and metabolic aspects are crucial. The patient's legacy offers invaluable information that could significantly contribute to enhancing diagnostic accuracy and developing personalized treatment strategies for this challenging disorder, potentially leading to better care for individuals living with hEDS.
Collapse
Affiliation(s)
- Arash Shirvani
- Ehlers-Danlos Syndrome Clinical Research Program, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (A.S.); (P.S.)
| | - Purusha Shirvani
- Ehlers-Danlos Syndrome Clinical Research Program, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (A.S.); (P.S.)
| | - Ugochukwu Jonah
- The Department of Pathology & Laboratory Medicine at Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (U.J.); (B.E.M.)
| | - Brian E. Moore
- The Department of Pathology & Laboratory Medicine at Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (U.J.); (B.E.M.)
| | - Michael F. Holick
- Ehlers-Danlos Syndrome Clinical Research Program, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (A.S.); (P.S.)
| |
Collapse
|
3
|
Iheagwam FN, Joseph AJ, Adedoyin ED, Iheagwam OT, Ejoh SA. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. PATHOPHYSIOLOGY 2025; 32:9. [PMID: 39982365 DOI: 10.3390/pathophysiology32010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/22/2025] Open
Abstract
Diabetes mellitus represents a complicated metabolic condition marked by ongoing hyperglycemia arising from impaired insulin secretion, inadequate insulin action, or a combination of both. Mitochondrial dysfunction has emerged as a significant contributor to the aetiology of diabetes, affecting various metabolic processes critical for glucose homeostasis. This review aims to elucidate the complex link between mitochondrial dysfunction and diabetes, covering the spectrum of diabetes types, the role of mitochondria in insulin resistance, highlighting pathophysiological mechanisms, mitochondrial DNA damage, and altered mitochondrial biogenesis and dynamics. Additionally, it discusses the clinical implications and complications of mitochondrial dysfunction in diabetes and its complications, diagnostic approaches for assessing mitochondrial function in diabetics, therapeutic strategies, future directions, and research opportunities.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amarachi Joy Joseph
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | - Eniola Deborah Adedoyin
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | | | - Samuel Akpoyowvare Ejoh
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| |
Collapse
|
4
|
Zheng JY, Ji XY, Zhao AQ, Sun FY, Liu LF, Xin GZ. Mass Spectrometry Probe Combined with Machine Learning to Capture the Relationship between Metabolites and Mitochondrial Complex Activity at the Whole-Cell Level. Anal Chem 2024; 96:18195-18203. [PMID: 39484990 DOI: 10.1021/acs.analchem.4c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondrial complex activity controls a multitude of physiological processes by regulating the cellular metabolism. Current methods for evaluating mitochondrial complex activity mainly focus on single metabolic reactions within mitochondria. These methods often require fresh samples in large quantities for mitochondria purification or intact mitochondrial membranes for real-time monitoring. Confronting these limitations, we shifted the analytical perspective toward interactive metabolic networks at the whole-cell level to reflect mitochondrial complex activity. To this end, we compiled a panel of mitochondrial respiratory chain-mapped metabolites (MRCMs), whose perturbations theoretically provide an overall reflection on mitochondrial complex activity. By introducing N-dimethyl-p-phenylenediamine and N-methyl-p-phenylenediamine as a pair of mass spectrometry probes, an ultraperformance liquid chromatography-tandem mass spectrometry method with high sensitivity (LLOQ as low as 0.2 fmol) was developed to obtain accurate quantitative data of MRCMs. Machine learning was then combined to capture the relationship between MRCMs and mitochondrial complex activity. Using Complex I as a proof-of-concept, we identified NADH, alanine, and phosphoenolpyruvate as metabolites associated with Complex I activity based on the whole-cell level. The effectiveness of using their concentrations to reflect Complex I activity was further validated in external data sets. Hence, by capturing the relationship between metabolites and mitochondrial complex activity at the whole-cell level, this study explores a novel analytical paradigm for the interrogation of mitochondrial complex activity, offering a favorable complement to existing methods particularly when sample quantities, type, and treatment timeliness pose challenges. More importantly, it shifts the focus from individual metabolic reactions within mitochondria to a more comprehensive view of an interactive metabolic network, which should serve as a promising direction for future research into the functional architecture between mitochondrial complexes and metabolites.
Collapse
Affiliation(s)
- Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Yuan Ji
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An-Qi Zhao
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
5
|
Sadeesh EM, Malik A, Lahamge MS, Singh P. Differential expression of nuclear-derived mitochondrial succinate dehydrogenase genes in metabolically active buffalo tissues. Mol Biol Rep 2024; 51:1071. [PMID: 39425877 DOI: 10.1007/s11033-024-10022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Buffaloes are crucial to agriculture, yet mitochondrial biology in these animals is less studied compared to humans and laboratory animals. This research examines tissue-specific variations in mitochondrial succinate dehydrogenase (SDH) gene expression across buffalo kidneys, hearts, brains, and ovaries. Understanding these variations sheds light on mitochondrial energy metabolism and its impact on buffalo health and productivity, revealing insights into enzyme regulation and potential improvements in livestock management. MATERIALS AND METHODS RNA-seq data from buffalo kidney, heart, brain, and ovary tissues were reanalyzed to explore mitochondrial SDH gene expression. The expression of SDH subunits (SDHA, SDHB, SDHC, SDHD) and assembly factors (SDHAF1, SDHAF2, SDHAF3, SDHAF4) was assessed using a log2 fold-change threshold of + 1 for up-regulated and - 1 for down-regulated transcripts, with significance set at p < 0.05. Hierarchical clustering and differential expression analyses were performed to identify tissue-specific expression patterns and regulatory mechanisms, while Gene Ontology and KEGG pathway analyses were conducted to uncover functional attributes and pathway enrichments across different tissues. RESULTS Reanalysis of RNA-seq data from different tissues of healthy female buffaloes revealed distinct expression patterns for SDH subunits and assembly factors. While SDHA, SDHB, and SDHC showed variable expression across tissues, SDHAF2, SDHAF3, and SDHAF4 exhibited tissue-specific profiles. Significant up-regulation of SDHA, SDHB, and several assembly factors was observed in specific tissue comparisons, with fewer down-regulated transcripts. Gene ontology and KEGG pathway analyses linked the up-regulated transcripts to mitochondrial ATP synthesis and the respiratory electron transport chain. Notably, tissue-specific variations in mitochondrial function were particularly evident in the ovary. CONCLUSION This study identifies distinct SDH gene expression patterns in buffalo tissues, highlighting significant down-regulation of SDHA, SDHB, SDHC, and assembly factors in the ovary. These findings underscore the critical role of mitochondria in tissue-specific energy production and metabolic regulation, suggest potential metabolic adaptations, and emphasize the importance of mitochondrial complex II. The insights gained offer valuable implications for improving feed efficiency and guiding future research and therapies for energy metabolism disorders.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Anuj Malik
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
- University of Bonn, Institute of Animal Sciences, Katzenburgweg 7-9, 53115, Bonn, Germany
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pratiksha Singh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
6
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
7
|
Haroon S, Yoon H, Seiler C, Osei-Frimpong B, He J, Nair RM, Mathew ND, Burg L, Kose M, Venkata CRM, Anderson VE, Nakamaru-Ogiso E, Falk MJ. N-acetylcysteine and cysteamine bitartrate prevent azide-induced neuromuscular decompensation by restoring glutathione balance in two novel surf1-/- zebrafish deletion models of Leigh syndrome. Hum Mol Genet 2023; 32:1988-2004. [PMID: 36795052 PMCID: PMC10244219 DOI: 10.1093/hmg/ddad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
SURF1 deficiency (OMIM # 220110) causes Leigh syndrome (LS, OMIM # 256000), a mitochondrial disorder typified by stress-induced metabolic strokes, neurodevelopmental regression and progressive multisystem dysfunction. Here, we describe two novel surf1-/- zebrafish knockout models generated by CRISPR/Cas9 technology. While gross larval morphology, fertility, and survival into adulthood appeared unaffected, surf1-/- mutants manifested adult-onset ocular anomalies and decreased swimming activity, as well as classical biochemical hallmarks of human SURF1 disease, including reduced complex IV expression and enzymatic activity and increased tissue lactate. surf1-/- larvae also demonstrated oxidative stress and stressor hypersensitivity to the complex IV inhibitor, azide, which exacerbated their complex IV deficiency, reduced supercomplex formation, and induced acute neurodegeneration typical of LS including brain death, impaired neuromuscular responses, reduced swimming activity, and absent heartrate. Remarkably, prophylactic treatment of surf1-/- larvae with either cysteamine bitartrate or N-acetylcysteine, but not other antioxidants, significantly improved animal resiliency to stressor-induced brain death, swimming and neuromuscular dysfunction, and loss of heartbeat. Mechanistic analyses demonstrated cysteamine bitartrate pretreatment did not improve complex IV deficiency, ATP deficiency, or increased tissue lactate but did reduce oxidative stress and restore glutathione balance in surf1-/- animals. Overall, two novel surf1-/- zebrafish models recapitulate the gross neurodegenerative and biochemical hallmarks of LS, including azide stressor hypersensitivity that was associated with glutathione deficiency and ameliorated by cysteamine bitartrate or N-acetylcysteine therapy.
Collapse
Affiliation(s)
- Suraiya Haroon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heeyong Yoon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph Seiler
- Zebrafish Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bruce Osei-Frimpong
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Center, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohini M Nair
- Scheie Eye Center, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonard Burg
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melis Kose
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chavali R M Venkata
- Scheie Eye Center, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vernon E Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Turton N, Millichap L, Hargreaves IP. Potential Biomarkers of Mitochondrial Dysfunction Associated with COVID-19 Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:211-224. [PMID: 37378769 DOI: 10.1007/978-3-031-28012-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Mitochondria play crucial roles in modulating immune responses, and viruses can in turn moderate mitochondrial functioning. Therefore, it is not judicious to assume that clinical outcome experienced in patients with COVID-19 or long COVID may be influenced by mitochondrial dysfunction in this infection. Also, patients who are predisposed to mitochondrial respiratory chain (MRC) disorders may be more susceptible to worsened clinical outcome associated with COVID-19 infection and long COVID. MRC disorders and dysfunction require a multidisciplinary approach for their diagnosis of which blood and urinary metabolite analysis may be utilized, including the measurement of lactate, organic acid and amino acid levels. More recently, hormone-like cytokines including fibroblast growth factor-21 (FGF-21) have also been used to assess possible evidence of MRC dysfunction. In view of their association with MRC dysfunction, assessing evidence of oxidative stress parameters including GSH and coenzyme Q10 (CoQ10) status may also provide useful biomarkers for diagnosis of MRC dysfunction. To date, the most reliable biomarker available for assessing MRC dysfunction is the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ. Moreover, the combined use of these biomarkers in a multiplexed targeted metabolic profiling strategy may further improve the diagnostic yield of the individual tests for assessing evidence of mitochondrial dysfunction in patients pre- and post-COVID-19 infection.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|