1
|
Banerjee S, Szyszka P, Beck CW. Knockdown of NeuroD2 leads to seizure-like behavior, brain neuronal hyperactivity and a leaky blood-brain barrier in a Xenopus laevis tadpole model of DEE75. Genetics 2024; 227:iyae085. [PMID: 38788202 PMCID: PMC11228833 DOI: 10.1093/genetics/iyae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEE) are a genetically diverse group of severe, early onset seizure disorders. DEE are normally identified clinically in the first six months of life by the presence of frequent, difficult to control seizures and accompanying stalling or regression of development. DEE75 results from de novo mutations of the NEUROD2 gene that result in loss of activity of the encoded transcription factor, and the seizure phenotype was shown to be recapitulated in Xenopus tropicalis tadpoles. We used CRISPR/Cas9 to make a DEE75 model in Xenopus laevis, to further investigate the developmental etiology. NeuroD2.S CRISPR/Cas9 edited tadpoles were more active, swam faster on average, and had more seizures (C-shaped contractions resembling unprovoked C-start escape responses) than their sibling controls. Live imaging of Ca2+ signaling revealed prolongued, strong signals sweeping through the brain, indicative of neuronal hyperactivity. While the resulting tadpole brain appeared grossly normal, the blood-brain barrier (BBB) was found to be leakier than that of controls. Additionally, the TGFβ antagonist Losartan was shown to have a short-term protective effect, reducing neuronal hyperactivity and reducing permeability of the BBB. Treatment of NeuroD2 CRISPant tadpoles with 5 mM Losartan decreased seizure events by more than 4-fold compared to the baseline. Our results support a model of DEE75 resulting from reduced NeuroD2 activity during vertebrate brain development, and indicate that a leaky BBB contributes to epileptogenesis.
Collapse
Affiliation(s)
- Sulagna Banerjee
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
| | - Paul Szyszka
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Caroline W Beck
- Department of Zoology, University of Otago, PO Box56, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Yin J, Huang M, Duan R, Huang W, Zhang Y. Effects of atrazine on movement, metabolism and gene expression in Pelophylax nigromaculatus larvae under global warming. ENVIRONMENTAL RESEARCH 2024; 252:119007. [PMID: 38677404 DOI: 10.1016/j.envres.2024.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Global warming and environmental pollutants both pose a threat to the behavior and physiology of animals, but research on the combined effects of the two is limited. Atrazine, a widely used herbicide, has toxic effects on organisms. In this study, the effects of environmental concentrations of atrazine exposure (100 μg/L) for seven days on the movement, metabolism and gene expression related to motility of Pelophylax nigromaculatus larvae (GS8) were investigated under global warming. The results showed that compared to the optimal growth temperature (18 °C), atrazine treatment under global warming (21 °C) significantly increased the average speed (about 11.2 times) and maximum acceleration (about 1.98 times) of P. nigromaculatus larvae, altered the relative abundance of 539 metabolites, including Formyl-5-hydroxykynurenamine, 2,4-Dihydroxybenzophenone, and FAPy-adenine, and changed the nucleotide metabolism, pyrimidine metabolism, glycerophospholipid metabolism, and purine metabolism, as well as increased the gene expression of SPLA2 (about 6.46 times) and CHK (about 3.25 times). In summary, atrazine treatment under global warming caused metabolic disorders in amphibian larvae and increased the expression of some movement-related genes in the brain, resulting in abnormally active.
Collapse
Affiliation(s)
- Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China.
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Wentao Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yuhao Zhang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
3
|
Sheng H, Liu R, Li Q, Lin Z, He Y, Blum TS, Zhao H, Tang X, Wang W, Jin L, Wang Z, Hsiao E, Le Floch P, Shen H, Lee AJ, Jonas-Closs RA, Briggs J, Liu S, Solomon D, Wang X, Lu N, Liu J. Brain implantation of tissue-level-soft bioelectronics via embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596533. [PMID: 38853924 PMCID: PMC11160708 DOI: 10.1101/2024.05.29.596533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3-9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.
Collapse
|
4
|
Ciani C, Ayub M, Falcone C. Evolution of Astrocyte-Neuron Interactions Across Species. ADVANCES IN NEUROBIOLOGY 2024; 39:1-17. [PMID: 39190069 DOI: 10.1007/978-3-031-64839-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Proper functioning of the central nervous system depends on various tightly regulated phenomena, among which astrocyte-neuron interactions are of critical importance. Various studies across the species have highlighted the diverse yet crucial roles of astrocytes in regulating the nervous system development and functions. In simpler organisms like worms or insects, astrocyte-like cells govern basic functions such as structural support to neurons or regulation of extracellular ions. As the species complexity increases, so does the functional and morphological complexity of astrocytes. For example, in fish and amphibians, these cells are involved in synaptic development and ion homeostasis, while in reptiles and birds, astrocytes regulate synaptic transmission and plasticity and are reported to be involved in complex behaviors. Other species like those belonging to mammals and, in particular, primates have a heterogeneous population of astrocytes, exhibiting region-specific functional properties. In primates, these cells are responsible for proper synaptic transmission, neurotransmitter release and metabolism, and higher cognitive functions like learning, memory, or information processing. This chapter highlights the well-established and somewhat conserved roles of astrocytes and astrocyte-neuron interactions across the evolution of both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Caterina Ciani
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy
| | - Maria Ayub
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy
| | - Carmen Falcone
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
5
|
Freeman-Jones E, Miller WH, Work LM, Fullerton JL. Polypathologies and Animal Models of Traumatic Brain Injury. Brain Sci 2023; 13:1709. [PMID: 38137157 PMCID: PMC10741988 DOI: 10.3390/brainsci13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Traumatic brain injury (TBI) is an important health issue for the worldwide population, as it causes long-term pathological consequences for a diverse group of individuals. We are yet to fully elucidate the significance of TBI polypathologies, such as neuroinflammation and tau hyperphosphorylation, and their contribution to the development of chronic traumatic encephalopathy (CTE) and other neurological conditions. To advance our understanding of TBI, it is necessary to replicate TBI in preclinical models. Commonly used animal models include the weight drop model; these methods model human TBI in various ways and in different animal species. However, animal models have not demonstrated their clinical utility for identifying therapeutic interventions. Many interventions that were successful in improving outcomes for animal models did not translate into clinical benefit for patients. It is important to review current animal models and discuss their strengths and limitations within a TBI context. Modelling human TBI in animals encounters numerous challenges, yet despite these barriers, the TBI research community is working to overcome these difficulties. Developments include advances in biomarkers, standardising, and refining existing models. This progress will improve our ability to model TBI in animals and, therefore, enhance our understanding of TBI and, potentially, how to treat it.
Collapse
Affiliation(s)
- Erin Freeman-Jones
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK; (E.F.-J.); (W.H.M.)
| | - William H. Miller
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK; (E.F.-J.); (W.H.M.)
| | - Lorraine M. Work
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK;
| | - Josie L. Fullerton
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK;
| |
Collapse
|
6
|
Nikam RM, Kecskemethy HH, Kandula VVR, Averill LW, Langhans SA, Yue X. Abusive Head Trauma Animal Models: Focus on Biomarkers. Int J Mol Sci 2023; 24:4463. [PMID: 36901893 PMCID: PMC10003453 DOI: 10.3390/ijms24054463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Abusive head trauma (AHT) is a serious traumatic brain injury and the leading cause of death in children younger than 2 years. The development of experimental animal models to simulate clinical AHT cases is challenging. Several animal models have been designed to mimic the pathophysiological and behavioral changes in pediatric AHT, ranging from lissencephalic rodents to gyrencephalic piglets, lambs, and non-human primates. These models can provide helpful information for AHT, but many studies utilizing them lack consistent and rigorous characterization of brain changes and have low reproducibility of the inflicted trauma. Clinical translatability of animal models is also limited due to significant structural differences between developing infant human brains and the brains of animals, and an insufficient ability to mimic the effects of long-term degenerative diseases and to model how secondary injuries impact the development of the brain in children. Nevertheless, animal models can provide clues on biochemical effectors that mediate secondary brain injury after AHT including neuroinflammation, excitotoxicity, reactive oxygen toxicity, axonal damage, and neuronal death. They also allow for investigation of the interdependency of injured neurons and analysis of the cell types involved in neuronal degeneration and malfunction. This review first focuses on the clinical challenges in diagnosing AHT and describes various biomarkers in clinical AHT cases. Then typical preclinical biomarkers such as microglia and astrocytes, reactive oxygen species, and activated N-methyl-D-aspartate receptors in AHT are described, and the value and limitations of animal models in preclinical drug discovery for AHT are discussed.
Collapse
Affiliation(s)
- Rahul M. Nikam
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Heidi H. Kecskemethy
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Lauren W. Averill
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Nemours Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Xuyi Yue
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Radiology, Nemours Children’s Health, Wilmington, DE 19803, USA
| |
Collapse
|
7
|
Maiese A, Spina F, Visi G, Del Duca F, De Matteis A, La Russa R, Di Paolo M, Frati P, Fineschi V. The Expression of FOXO3a as a Forensic Diagnostic Tool in Cases of Traumatic Brain Injury: An Immunohistochemical Study. Int J Mol Sci 2023; 24:2584. [PMID: 36768906 PMCID: PMC9916452 DOI: 10.3390/ijms24032584] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most well-known causes of neurological impairment and disability in the world. The Forkhead Box class O (FOXO) 3a is a transcription factor that is involved in different molecular processes, such as cell apoptosis regulation, neuroinflammation and the response to oxidative stress. This study is the first to evaluate the post-mortem immunohistochemical (IHC) positivity of FOXO3a expression in human cases of TBI deaths. The autopsy databases of the Legal Medicine and Forensic Institutes of the "Sapienza" University of Roma and the University of Pisa were retrospectively reviewed. After analyzing autopsy reports, 15 cases of TBI deaths were selected as the study group, while the other 15 cases were chosen among non-traumatic brain deaths as the control group. Decomposed bodies and those with initial signs of putrefaction were excluded. Routine histopathological studies were performed using hematoxylin-eosin (H&E) staining. Furthermore, an IHC investigation on cerebral samples was performed. To evaluate FOXO3a expression, anti-FOXO3a antibodies (GTX100277) were utilized. Concerning the IHC analysis, all 15 samples of TBI cases showed positivity for FOXO3a in the cerebral parenchyma. All control cerebral specimens showed FOXO3a negativity. In addition, the longer the survival time, the greater the positivity to the reaction with FOXO3a was. This study shows the important role of FOXO3a in neuronal autophagy and apoptosis regulation and suggests FOXO3a as a possible potential pharmacological target.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Federica Spina
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giacomo Visi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| |
Collapse
|