1
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
2
|
Priyanto JA, Prastya ME, Hening ENW, Suryanti E, Kristiana R. Two Strains of Endophytic Bacillus velezensis Carrying Antibiotic-Biosynthetic Genes Show Antibacterial and Antibiofilm Activities Against Methicillin-Resistant Staphylococcus aureus (MRSA). Indian J Microbiol 2024; 64:1884-1893. [PMID: 39678944 PMCID: PMC11645368 DOI: 10.1007/s12088-024-01262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/13/2024] [Indexed: 12/17/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered a priority pathogen causing high mortality that requires effective control measures. This study aimed to detect the presence of antibiotic-biosynthetic genes and to evaluate the anti-MRSA activity of two strains of endophytic Bacillus velezensis isolated from Archidendron pauciflorum. PCR-based screening showed that B. velezensis strains, such as DJ4 and DJ9 possessed six antibiotic-biosynthetic genes, namely MlnA , DhbE , BacD , DfnD, SrfA, and BaeR. According to the preliminary test conducted using disc-diffusion assay, metabolite extracts from these strains have anti-MRSA activity with clear zone diameters of 13.00 ± 0.82 mm, and 17.33 ± 0.47 mm, respectively. Extract from DJ9 strain was more active to MRSA, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 62.50 µg/mL and 250 µg/mL, respectively. Furthermore, a bactericidal effect was observed, as evidenced by MBC/MIC ratio of four. Both DJ9 and DJ4 extracts showed a dose-dependent inhibitory effect on MRSA biofilm formation. Furthermore, a maximum inhibition percentage of 60.12 ± 2.5% was shown by DJ9 extract in two-fold MIC. The corresponding extract disrupted MRSA mature biofilms most effectively at 55.74 ± 1.4%. In conclusion, crude extract, particularly the DJ9 strain had significant potential in inhibiting MRSA cell growth, MRSA biofilm formation, and disrupting MRSA mature biofilm in vitro. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01262-1.
Collapse
Affiliation(s)
- Jepri Agung Priyanto
- Division of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Agatis Street, IPB Dramaga Campus, Bogor, West Java 16680 Indonesia
| | - Muhammad Eka Prastya
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains Dan Teknologi (KST) B.J Habibie (PUSPIPTEK), Serpong, South Tangerang, Banten Indonesia
| | - Egiyanti Nur Widhia Hening
- Division of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Agatis Street, IPB Dramaga Campus, Bogor, West Java 16680 Indonesia
| | - Erma Suryanti
- Department of Biology, Faculty of Sciences, Sumatera Institute of Technology, Lampung Selatan, Lampung, Indonesia
| | - Rhesi Kristiana
- Indonesian Marine Education and Research Organisation (MERO) Foundation, Br. Dinas Muntig, Bali, Indonesia
| |
Collapse
|
3
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
4
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
5
|
Chen X, Yang J, Qu C, Zhang Q, Sun S, Liu L. Anti- Staphylococcus aureus effects of natural antimicrobial peptides and the underlying mechanisms. Future Microbiol 2024; 19:355-372. [PMID: 38440873 DOI: 10.2217/fmb-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 03/06/2024] Open
Abstract
Staphylococcus aureus can cause localized infections such as abscesses and pneumonia, as well as systemic infections such as bacteremia and sepsis. Especially, methicillin-resistant S. aureus often presents multidrug resistance, which becomes a major clinical challenge. One of the most common reasons for methicillin-resistant S. aureus antibiotic resistance is the presence of biofilms. Natural antimicrobial peptides derived from different species have shown effectiveness in combating S. aureus biofilms. In this review, we summarize the inhibitory activity of antimicrobial peptides against S. aureus planktonic cells and biofilms. We also summarize the possible inhibitory mechanisms, involving cell adhesion inhibition, membrane fracture, biofilm disruption and DNA disruption. We believe this can provide the basis for further research against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jiuli Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Engineering & Technology Research Center for Pediatric Drug Development, Shandong Medicine & Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Chang Qu
- Department of Pharmacy, Beijing Daxing District Hospital of Integrated Chinese & Western Medicine. Beijing, 102600, People's Republic of China
| | - Qian Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Second Provincial General Hospital. Jinan, 250022, People's Republic of China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
6
|
Xiao Y, Wan C, Wu X, Xu Y, Chen Y, Rao L, Wang B, Shen L, Han W, Zhao H, Shi J, Zhang J, Song Z, Yu F. Novel small-molecule compound YH7 inhibits the biofilm formation of Staphylococcus aureus in a sarX-dependent manner. mSphere 2024; 9:e0056423. [PMID: 38170984 PMCID: PMC10826350 DOI: 10.1128/msphere.00564-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
The emergence of antibiotic-resistant and biofilm-producing Staphylococcus aureus isolates presents major challenges for treating staphylococcal infections. Biofilm inhibition is an important anti-virulence strategy. In this study, a novel maleimide-diselenide hybrid compound (YH7) was synthesized and demonstrated remarkable antimicrobial activity against methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in both planktonic cultures and biofilms. The minimum inhibitory concentration (MIC) of YH7 for S. aureus isolates was 16 µg/mL. Quantification of biofilms demonstrated that the sub-MIC (4 µg/mL) of YH7 significantly inhibits biofilm formation in both MSSA and MRSA. Confocal laser scanning microscopy analysis further confirmed the biofilm inhibitory potential of YH7. YH7 also significantly suppressed bacterial adherence to A549 cells. Moreover, YH7 treatment significantly inhibited S. aureus colonization in nasal tissue of mice. Preliminary mechanistic studies revealed that YH7 exerted potent biofilm-suppressing effects by inhibiting polysaccharide intercellular adhesin (PIA) synthesis, rather than suppressing bacterial autolysis. Real-time quantitative PCR data indicated that YH7 downregulated biofilm formation-related genes (clfA, fnbA, icaA, and icaD) and the global regulatory gene sarX, which promotes PIA synthesis. The sarX-dependent antibiofilm potential of YH7 was validated by constructing S. aureus NCTC8325 sarX knockout and complementation strains. Importantly, YH7 demonstrated a low potential to induce drug resistance in S. aureus and exhibited non-toxic to rabbit erythrocytes, A549, and BEAS-2B cells at antibacterial concentrations. In vivo toxicity assays conducted on Galleria mellonella further confirmed that YH7 is biocompatible. Overall, YH7 demonstrated potent antibiofilm activity supports its potential as an antimicrobial agent against S. aureus biofilm-related infections. IMPORTANCE Biofilm-associated infections, characterized by antibiotic resistance and persistence, present a formidable challenge in healthcare. Traditional antibacterial agents prove inadequate against biofilms. In this study, the novel compound YH7 demonstrates potent antibiofilm properties by impeding the adhesion and the polysaccharide intercellular adhesin production of Staphylococcus aureus. Notably, its exceptional efficacy against both methicillin-resistant and methicillin-susceptible strains highlights its broad applicability. This study highlights the potential of YH7 as a novel therapeutic agent to address the pressing issue of biofilm-driven infections.
Collapse
Affiliation(s)
- Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Xiaocui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulin Rao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Nazli A, Qiu J, Tang Z, He Y. Recent Advances and Techniques for Identifying Novel Antibacterial Targets. Curr Med Chem 2024; 31:464-501. [PMID: 36734893 DOI: 10.2174/0929867330666230123143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND With the emergence of drug-resistant bacteria, the development of new antibiotics is urgently required. Target-based drug discovery is the most frequently employed approach for the drug development process. However, traditional drug target identification techniques are costly and time-consuming. As research continues, innovative approaches for antibacterial target identification have been developed which enabled us to discover drug targets more easily and quickly. METHODS In this review, methods for finding drug targets from omics databases have been discussed in detail including principles, procedures, advantages, and potential limitations. The role of phage-driven and bacterial cytological profiling approaches is also discussed. Moreover, current article demonstrates the advancements being made in the establishment of computational tools, machine learning algorithms, and databases for antibacterial target identification. RESULTS Bacterial drug targets successfully identified by employing these aforementioned techniques are described as well. CONCLUSION The goal of this review is to attract the interest of synthetic chemists, biologists, and computational researchers to discuss and improve these methods for easier and quicker development of new drugs.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Jingyi Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Ziyi Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Avenue, Chongqing, 400714, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
8
|
Lin H, Song L, Zhou S, Fan C, Zhang M, Huang R, Zhou R, Qiu J, Ma S, He J. A Hybrid Antimicrobial Peptide Targeting Staphylococcus aureus with a Dual Function of Inhibiting Quorum Sensing Signaling and an Antibacterial Effect. J Med Chem 2023; 66:17105-17117. [PMID: 38099725 DOI: 10.1021/acs.jmedchem.3c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (MRSA) is now a major cause of bacterial infection. Antivirulence therapy does not stimulate evolution of a pathogen toward a resistant phenotype, providing a novel method to treat infectious diseases. Here, we used a cyclic peptide of CP7, an AIP-III variant that specifically inhibited the virulence and biofilm formation of Staphylococcus aureus (S. aureus) in a nonbiocidal manner, to conjugate with a broad-spectrum antimicrobial peptide (AMP) via two N-termini to obtain a hybrid AMP called CP7-FP13-2. This peptide not only specifically inhibited the production of virulence of S. aureus at low micromolar concentrations but also killed S. aureus, including MRSA, by disrupting the integrity of the bacterial cell membrane. In addition, CP7-FP13-2 inhibited the formation of the S. aureus biofilm and showed good antimicrobial efficacy against the S. aureus-infected Kunming mice model. Therefore, this study provides a promising strategy against the resistance and virulence of S. aureus.
Collapse
Affiliation(s)
- Haixing Lin
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
- Department of Urology, Tongren Municipal People's Hospital, 120 Taoyuan Avenue, Tongren, Guizhou 554300, P. R. China
| | - Li Song
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Shaofen Zhou
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Cuiqiong Fan
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Minna Zhang
- Department of Nephrology, Tongren Municipal People's Hospital, 120 Taoyuan Avenue, Tongren, Guizhou 554300, P. R. China
| | - Ruifeng Huang
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Runhong Zhou
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jingnan Qiu
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Shuaiqi Ma
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jian He
- Group of peptides and natural products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| |
Collapse
|
9
|
Ruiz-Romero RA, Vargas-Bello-Pérez E. Non-aureus staphylococci and mammaliicocci as a cause of mastitis in domestic ruminants: current knowledge, advances, biomedical applications, and future perspectives - a systematic review. Vet Res Commun 2023; 47:1067-1084. [PMID: 36964436 PMCID: PMC10038778 DOI: 10.1007/s11259-023-10090-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023]
Abstract
Non-aureus staphylococci and mammaliicocci (NASM) are one of the most common causes of subclinical mastitis in dairy animals and the extent of damage by intramammary infections (IMI) caused by NASM is still under debate. The different effects of NASM on the mammary gland may be associated with differences between bacterial species. NASM are normal and abundant colonizers of humans and animals and become pathogenic only in certain situations. The veterinary interest in NASM has been intense for the last 25 years, due to the strongly increasing rate of opportunistic infections. Therefore, the objective of this review is to provide a general background of the NASM as a cause of mastitis and the most recent advances that exist to prevent and fight the biofilm formation of this group of bacteria, introduce new biomedical applications that could be used in dairy herds to reduce the risk of chronic and recurrent infections, potentially responsible for economic losses due to reduced milk production and quality. Effective treatment of biofilm infection requires a dual approach through a combination of antibiofilm and antimicrobial agents. Even though research on the development of biofilms is mainly focused on human medicine, this technology must be developed at the same time in veterinary medicine, especially in the dairy industry where IMI are extremely common.
Collapse
Affiliation(s)
- Rocio Angélica Ruiz-Romero
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad de México, 04510, México.
| | - Einar Vargas-Bello-Pérez
- School of Agriculture, Policy and Development, University of Reading, New Agriculture Building, Earley Gate, Whiteknights Road, PO Box 237, Reading, Berkshire, RG6 6EU, UK.
| |
Collapse
|
10
|
Talla RM, Tamfu AN, Wakeu BNK, Ceylan O, Mbazoa CD, Kapche GDWF, Lenta BN, Sewald N, Wandji J. Evaluation of anti-quorum sensing and antibiofilm effects of secondary metabolites from Gambeya lacourtiana (De Wild) Aubr. & Pellegr against selected pathogens. BMC Complement Med Ther 2023; 23:300. [PMID: 37620848 PMCID: PMC10464238 DOI: 10.1186/s12906-023-04115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Microbial infections cause serious health problems especially with the rising antibiotic resistance which accounts for about 700,000 human deaths annually. Antibiotics which target bacterial death encounter microbial resistance with time, hence, there is an urgent need for the search of antimicrobial substances which target disruption of virulence factors such as biofilm and quorum sensing (QS) with selective pressure on the pathogens so as to avoid resistance. METHODS Natural products are suitable leads for antimicrobial drugs that can inhibit bacterial biofilms and QS. Twenty compounds isolated from the medicinal plant Gambeya lacourtiana were evaluated for their antibiofilm and anti-quorum sensing effects against selected pathogenic bacteria. RESULTS Most of the compounds inhibited violacein production in Chromobacterium violaceum CV12472 and the most active compound, Epicatechin had 100% inhibition at MIC (Minimal Inhibitory Concentration) and was the only compound to inhibit violacein production at MIC/8 with percentage inhibition of 17.2 ± 0.9%. Since the bacteria C. violaceum produces violacein while growing, the inhibition of the production of this pigment reflects the inhibition of signal production. Equally, some compounds inhibited violacein production by C. violaceum CV026 in the midst of an externally supplied acylhomoserine lactone, indicating that they disrupted signal molecule reception. Most of the compounds exhibited biofilm inhibition on Staphyloccocus aureus, Escherichia coli and Candida albicans and it was observed that the Gram-positive bacteria biofilm was most susceptible. The triterpenoids bearing carboxylic acid group, the ceramide and epicatechin were the most active compounds compared to others. CONCLUSION Since some of the compounds disrupted QS mediated processes in bacteria, it indicates that this plant is a source of antibiotics drugs that can reduce microbial resistance.
Collapse
Affiliation(s)
- Rostan Mangoua Talla
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
- Department of Chemistry, Higher Teacher Training C ollege, The University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon.
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koc-man University, Mugla, 48147, Turkey.
| | - Brussine Nadège Kweka Wakeu
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koc-man University, Mugla, 48147, Turkey
| | - Céline Djama Mbazoa
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | | | - Bruno Ndjakou Lenta
- Department of Chemistry, Higher Teacher Training C ollege, The University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon
| | - Norbert Sewald
- Chemistry Department, Organic and Bioorganic Chemistry, Bielefeld University, P.O. Box 100131, 33501, Bielefeld, Germany
| | - Jean Wandji
- Department of Organic Chemistry, Faculty of Science, The University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
11
|
Wei Y, Sandhu E, Yang X, Yang J, Ren Y, Gao X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms 2022; 10:microorganisms10122353. [PMID: 36557606 PMCID: PMC9783839 DOI: 10.3390/microorganisms10122353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
As a Gram-positive cocci existing in nature, Staphylococcus has a variety of species, such as Staphylococcus aureus and Staphylococcus epidermidis, etc. Growing evidence reveals that Staphylococcus is closely related to the occurrence and development of various cancers. On the one hand, cancer patients are more likely to suffer from bacterial infection and antibiotic-resistant strain infection compared to healthy controls. On the other hand, there exists an association between staphylococcal infection and carcinogenesis. Staphylococcus often plays a pathogenic role and evades the host immune system through surface adhesion molecules, α-hemolysin, PVL (Panton-Valentine leukocidin), SEs (staphylococcal enterotoxins), SpA (staphylococcal protein A), TSST-1 (Toxic shock syndrom toxin-1) and other factors. Staphylococcal nucleases (SNases) are extracellular nucleases that serve as genomic markers for Staphylococcus aureus. Interestingly, a human homologue of SNases, SND1 (staphylococcal nuclease and Tudor domain-containing 1), has been recognized as an oncoprotein. This review is the first to summarize the reported basic and clinical evidence on staphylococci and neoplasms. Investigations on the correlation between Staphylococcus and the occurrence, development, diagnosis and treatment of breast, skin, oral, colon and other cancers, are made from the perspectives of various virulence factors and SND1.
Collapse
Affiliation(s)
- Yuannan Wei
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esha Sandhu
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| |
Collapse
|
12
|
Kim S, Lee JH, Kim YG, Tan Y, Lee J. Hydroquinones Inhibit Biofilm Formation and Virulence Factor Production in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms231810683. [PMID: 36142597 PMCID: PMC9506180 DOI: 10.3390/ijms231810683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is one of the major pathogens responsible for antimicrobial resistance-associated death. S. aureus can secrete various exotoxins, and staphylococcal biofilms play critical roles in antibiotic tolerance and the persistence of chronic infections. Here, we investigated the inhibitory effects of 18 hydroquinones on biofilm formation and virulence factor production by S. aureus. It was found that 2,5-bis(1,1,3,3-tetramethylbutyl) hydroquinone (TBHQ) at 1 µg/mL efficiently inhibits biofilm formation by two methicillin-sensitive and two methicillin-resistant S. aureus strains with MICs of 5 µg/mL, whereas the backbone compound hydroquinone did not (MIC > 400 µg/mL). In addition, 2,3-dimethylhydroquinone and tert-butylhydroquinone at 50 µg/mL also exhibited antibiofilm activity. TBHQ at 1 µg/mL significantly decreased the hemolytic effect and lipase production by S. aureus, and at 5−50 µg/mL was non-toxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination or growth. Transcriptional analyses showed that TBHQ suppressed the expression of RNAIII (effector of quorum sensing). These results suggest that hydroquinones, particularly TBHQ, are potentially useful for inhibiting S. aureus biofilm formation and virulence.
Collapse
Affiliation(s)
- Sanghun Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-810-2533
| |
Collapse
|