1
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
2
|
Shen-Gunther J, Easley A. HPV, HBV, and HIV-1 Viral Integration Site Mapping: A Streamlined Workflow from NGS to Genomic Insights of Carcinogenesis. Viruses 2024; 16:975. [PMID: 38932267 PMCID: PMC11209625 DOI: 10.3390/v16060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Viral integration within the host genome plays a pivotal role in carcinogenesis. Various disruptive mechanisms are involved, leading to genomic instability, mutations, and DNA damage. With next-generation sequencing (NGS), we can now precisely identify viral and host genomic breakpoints and chimeric sequences, which are useful for integration site analysis. In this study, we evaluated a commercial hybrid capture NGS panel specifically designed for detecting three key viruses: HPV, HBV, and HIV-1. We also tested workflows for Viral Hybrid Capture (VHC) and Viral Integration Site (VIS) analysis, leveraging customized viral databases in CLC Microbial Genomics. By analyzing sequenced data from virally infected cancer cell lines (including SiHa, HeLa, CaSki, C-33A, DoTc2, 2A3, SCC154 for HPV; 3B2, SNU-182 for HBV; and ACH-2 for HIV-1), we precisely pinpointed viral integration sites. The workflow also highlighted disrupted and neighboring human genes that may play a crucial role in tumor development. Our results included informative virus-host read mappings, genomic breakpoints, and integration circular plots. These visual representations enhance our understanding of the integration process. In conclusion, our seamless end-to-end workflow bridges the gap in understanding viral contributions to cancer development, paving the way for improved diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Gynecologic Oncology & Clinical Investigation, Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA
| | - Acarizia Easley
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| |
Collapse
|
3
|
Oubaddou Y, Ben Ali F, Oubaqui FE, Qmichou Z, Bakri Y, Rabii Ameziane RA. The Tumor Suppressor BRCA1/2, Cancer Susceptibility and Genome Instability in Gynecological and Mammary Cancers. Asian Pac J Cancer Prev 2023; 24:3139-3153. [PMID: 37774066 PMCID: PMC10762740 DOI: 10.31557/apjcp.2023.24.9.3139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
BRCA1 and BRCA2 germline alterations highly predispose women to breast and ovarian cancers. They are mostly found within the TNBC (Triple-Negative Breast Cancer) and the HGSOC (High-Grade Serous Ovarian Carcinoma) subsets, known by an aggressive phenotype, the lack of therapeutic targets and poor prognosis. Importantly, there is an increased risk for cervical cancer in BRCA1 and BRCA2 mutation carriers that raises questions about the link between the HPV-driven genome instability and BRCA1 and BRCA2 germline mutations. Clinical, preclinical, and in vitro studies explained the increased risk for breast and ovarian cancers by genome instability resulting from the lack or loss of many functions related to BRCA1 or BRCA2 proteins such as DNA damage repair, stalled forks and R-loops resolution, transcription regulation, cell cycle control, and oxidative stress. In this review, we decipher the relationship between BRCA1/2 alterations and genomic instability leading to gynecomammary cancers through results from patients, mice, and cell lines. Understanding the early events of BRCA1/2-driven genomic instability in gynecomammary cancers would help to find new biomarkers for early diagnosis, improve the sensitivity of emerging therapies such as PARP inhibitors, and reveal new potential therapeutic targets.
Collapse
Affiliation(s)
- Yassire Oubaddou
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ben Ali
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ezzahrae Oubaqui
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Rabii Ameziane Rabii Ameziane
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
4
|
Tsakogiannis D, Nikolaidis M, Zagouri F, Zografos E, Kottaridi C, Kyriakopoulou Z, Tzioga L, Markoulatos P, Amoutzias GD, Bletsa G. Mutation Profile of HPV16 L1 and L2 Genes in Different Geographic Areas. Viruses 2022; 15:141. [PMID: 36680181 PMCID: PMC9867070 DOI: 10.3390/v15010141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
The causal relationship between HPV and cervical cancer in association with the high prevalence of high risk HPV genotypes led to the design of HPV vaccines based on the major capsid L1 protein. In recent years, capsid protein L2 has also become a focal point in the field of vaccine research. The present review focuses on the variability of HPV16 L1 and L2 genes, emphasizing the distribution of specific amino acid changes in the epitopes of capsid proteins. Moreover, a substantial bioinformatics analysis was conducted to describe the worldwide distribution of amino acid substitutions throughout HPV16 L1, L2 proteins. Five amino acid changes (T176N, N181T; EF loop), (T266A; FG loop), (T353P, T389S; HI loop) are frequently observed in the L1 hypervariable surface loops, while two amino acid substitutions (D43E, S122P) are adjacent to L2 specific epitopes. These changes have a high prevalence in certain geographic regions. The present review suggests that the extensive analysis of the amino acid substitutions in the HPV16 L1 immunodominant loops may provide insights concerning the ability of the virus in evading host immune response in certain populations. The genetic variability of the HPV16 L1 and L2 epitopes should be extensively analyzed in a given population.
Collapse
Affiliation(s)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Christine Kottaridi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Zaharoula Kyriakopoulou
- Department of Environment, School of Technology, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| | - Lamprini Tzioga
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| | | | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Garyfalia Bletsa
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| |
Collapse
|
5
|
Shen-Gunther J, Cai H, Wang Y. A Customized Monkeypox Virus Genomic Database (MPXV DB v1.0) for Rapid Sequence Analysis and Phylogenomic Discoveries in CLC Microbial Genomics. Viruses 2022; 15:40. [PMID: 36680080 PMCID: PMC9861985 DOI: 10.3390/v15010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Monkeypox has been a neglected, zoonotic tropical disease for over 50 years. Since the 2022 global outbreak, hundreds of human clinical samples have been subjected to next-generation sequencing (NGS) worldwide with raw data deposited in public repositories. However, sequence analysis for in-depth investigation of viral evolution remains hindered by the lack of a curated, whole genome Monkeypox virus (MPXV) database (DB) and efficient bioinformatics pipelines. To address this, we developed a customized MPXV DB for integration with "ready-to-use" workflows in the CLC Microbial Genomics Module for whole genomic and metagenomic analysis. After database construction (218 MPXV genomes), whole genome alignment, pairwise comparison, and evolutionary analysis of all genomes were analyzed to autogenerate tabular outputs and visual displays (collective runtime: 16 min). The clinical utility of the MPXV DB was demonstrated by using a Chimpanzee fecal, hybrid-capture NGS dataset (publicly available) for metagenomic, phylogenomic, and viral/host integration analysis. The clinically relevant MPXV DB embedded in CLC workflows proved to be a rapid method of sequence analysis useful for phylogenomic exploration and a wide range of applications in translational science.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Department of Clinical Investigation, Gynecologic Oncology & Clinical Investigation, Brooke Army Medical Center, Fort Sam Houston, TX 78234, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|