1
|
Tan TF, Tay SA, Agarwal-Sinha S, Tan GSW, Wu WC, Tsai ASH. Persistent avascular retina in retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06820-x. [PMID: 40178600 DOI: 10.1007/s00417-025-06820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Persistent avascular retina (PAR) has been increasingly reported with the increased use of anti-vascular endothelial growth factor (VEGF) agents in treatment-requiring ROP. However, they have also been observed in ROP eyes that did not meet treatment requirement and spontaneously regressed. PAR is highlighted in the updated nomenclature under the International Classification of Retinopathy of Prematurity, 3rd edition (ICROP3) consensus statement, underscoring the increased emphasis in detecting PAR. PAR has been noted to persist beyond existing ROP screening guidelines, and were found to be associated with complications like retinal tear and detachment, especially in eyes with more posterior PAR. Thus, serial monitoring of retinal vascularization, facilitated by fluorescein angiography and wide-field imaging, for these associated complications have been encouraged. The current lack of consensus in the follow-up and management of PAR prompts further work in this area: understanding the natural course of retinal vascularization in both untreated and treated ROP, the modulation of anti-VEGF on retinal function, and the clinical significance of PAR-associated vascular patterns can help to guide management protocols for PAR in ROP eyes.
Collapse
Affiliation(s)
- Ting Fang Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
| | - Su Ann Tay
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
- KK Women'S and Children'S Hospital, Singapore, Singapore
| | | | - Gavin Siew Wei Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Mirnia K, Bitaraf M, Namakin K, Azimzadeh A, Tanourlouee SB, Zolbin MM, Masoumi A, Kajbafzadeh AM. Enhancing Late Retinopathy of Prematurity Outcomes with Fresh Bone Marrow Mononuclear Cells and Melatonin Combination Therapy. Stem Cell Rev Rep 2025; 21:466-476. [PMID: 39503829 DOI: 10.1007/s12015-024-10819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Retinopathy of prematurity (ROP) is a vasoproliferative disease affecting premature neonates with life-lasting impacts. This study aims to investigate the long-term functional outcomes and alterations in neural retina architecture following the intravitreal transplantation of bone marrow mononuclear cells (BMMNC) in the rat models of ROP, and to evaluate the effect of adjunctive therapy with melatonin. METHODS 32 neonate rats were employed. The ROP model was developed in 10 neonatal rats, and two were assigned as control. The ROP models received BMMNC suspension, containing 1.2 × 105 cells, in their right eye, and normal saline in left at p12. Five ROP rats received 12.5 mg/kg melatonin orally for five days (p12 to p17). Optical coherence tomography (OCT) and electroretinography (ERG) were performed on p47. Eyes were then harvested on p47, and after six months for histology, immunofluorescence (anti-calbindin, anti-PKC, and anti-Brn3), and immunohistochemistry (synaptophysin). RESULTS Cell therapy alone and with melatonin increased retinal thickness, and improved oscillatory potentials on ERG. Combination therapy increased horizontal and retinal ganglion cell populations. All treatments improved synaptic maturity in the inner plexiform layer, but only combination therapy was effective on the outer plexiform layer. CONCLUSION Melatonin and BMMNCs combination therapy effectively ameliorates retinal structural and functional deficits at later ROP stages, without causing severe adverse effects. It significantly increases the survival of post-receptor retinal neurons and preserves retinal synaptic structures in the long term, highlighting the promising potential of this novel combination therapy approach to minimize visual deficits in ROP patients.
Collapse
Affiliation(s)
- Kayvan Mirnia
- Pediatrics Center of Excellence, Department of Neonatology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Bitaraf
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Namakin
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center, Gharib st., Keshavarz blvd., Tehran, 419733151, Iran.
| | - Masoume Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center, Gharib st., Keshavarz blvd., Tehran, 419733151, Iran.
| | - Ahmad Masoumi
- Ophthalmology Department and Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Huang C, Zou W, Ma W, Li J, Bai Y, Wu R, Li Q, Fang Q, Chen W, Lu X, Feng S. Effect and factors associated with reactivation after intravitreal conbercept or aflibercept in retinopathy of prematurity. Eur J Med Res 2025; 30:55. [PMID: 39871372 PMCID: PMC11773745 DOI: 10.1186/s40001-024-02206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/05/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND To evaluate the effect and factors associated with the reactivation of retinopathy of prematurity (ROP) after intravitreal conbercept or aflibercept. METHODS We retrospectively reviewed the medical records of 176 eyes diagnosed with ROP and treated with anti-VEGF therapy between January 2018 and September 2022. The rate of reactivation and complications were assessed during the follow-up period. The factors of reactivation of ROP after intravitreal conbercept or aflibercept were analyzed on the basis of clinical factors and retinal parameters. RESULTS Reactivation of ROP occurred in 10 eyes (13.9%) after intravitreal conbercept and 13 eyes (12.5%) after intravitreal aflibercept (P = 0.79). The interval between injection and reactivation was significantly longer in the aflibercept group than in the conbercept group (15.50 ± 4.05 vs. 5.36 ± 0.50 weeks) (P < 0.001). The central retinal arteriolar equivalent (CRAE) of aggressive ROP was larger than that of type 1 prethreshold and threshold ROP before anti-VEGF therapy (P < 0.05). Zone I and stage 3 exhibited a positive correlation with the reactivation of retinopathy of prematurity (ROP) [odds ratio (OR) = 20.15, 5.02]. The changes in CRAE of pre-and post-therapy and gestational age were identified as potential protective factors for these outcomes (OR = 0.23, 0.49). CONCLUSIONS Conbercept and aflibercept are effective for treating ROP. Aflibercept resulted in longer treatment intervals compared to conbercept. Zone, stage, and gestational age were associated with the reactivation of ROP. CRAE was associated with not only the severity of ROP but also its reactivation. Additionally, it may be an objective indicator in the early indication and follow-up of ROP.
Collapse
Affiliation(s)
- Chunling Huang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Weikang Zou
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Jiali Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Yichen Bai
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Rong Wu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Qiqi Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Qi Fang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Wenna Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China.
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Avenue Middle, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
4
|
Feng X, Zhang L, Jiao K, Li Y, Wu M, Xie Y, Xiao L. Tracking astrocyte polarization in the retina in retinopathy of prematurity. Exp Eye Res 2025; 250:110170. [PMID: 39577607 DOI: 10.1016/j.exer.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Astrocyte patterns affect the normal development of the retinal vascular network in retinopathy of prematurity (ROP), which is associated with VEGF secretion. However, the role of the astrocyte polarization in this process remains unknown. Therefore, this study aimed to track the status of A1/A2 reactive astrocytes in the retinas of the oxygen-induced retinopathy (OIR) model and their association with VEGF expression. The C57BL/6 mouse OIR model was constructed to characterize the pathological changes in ROP. Immunofluorescence of iB4 and GFAP staining was performed to observe changes in the vascular network and astrocyte pattern at different time points (P0, P7, P12, P17, and P21). C3-labeled A1 reactive and S100A10-labeled A2 reactive astrocytes and VEGF were also observed. The pattern of GFAP-labeled astrocyte was altered concurrently with the iB4-positive vascular network during OIR. Astrocyte activity was significantly weakened at P12 and significantly enhanced at P17. Notably, the number of C3-labeled A1 reactive astrocytes was significantly increased at P12, decreased at P17, and normalized at P21 in OIR models. S100A10-labeled A2 reactive astrocytes were significantly increased at P17 but did not change significantly at P12 or P17. VEGF levels were decreased at P7-P12 and increased at P12-P17. The expression pattern of VEGF was opposite to that of C3-labeled A1 reactive astrocytes and identical to that of S100A10-labeled A2 reactive astrocytes. In conclusion, the astrocyte pattern and vascular network exhibited similar changes during the OIR process, and the periods of vaso-obliteration and neo-vascularization display an abnormal activation in A1-and A2-reactive astrocytes.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Liwei Zhang
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Kangwei Jiao
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Yunqing Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Min Wu
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Yu Xie
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Libo Xiao
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China.
| |
Collapse
|
5
|
Wang Z, Tan W, Li B, Chen J, Zhu J, Xu F, Tang F, Yoshida S, Zhou Y. LncRNA-MM2P regulates retinal neovascularization through M2 macrophage polarization. Exp Eye Res 2024; 248:110072. [PMID: 39241859 DOI: 10.1016/j.exer.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The study aims to investigate the effects and potential mechanisms of lncRNA-MM2P on retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). The OIR model was established in C57BL/6J mice. RAW264.7 cell line and bone marrow-derived macrophages (BMDMs) from mice were used for in vitro studies. RT-qPCR was used to analyze the expressions of lncRNA and mRNAs. The protein expression levels were determined by western blotting. The size of avascular areas and neovascular tufts were assessed based on isolectin B4 immunofluorescence staining images. The human retinal endothelial cells (HRECs) were used to evaluate the proliferation, migration, and tube formation of endothelial cells. The expression of lncRNA-MM2P was significantly upregulated from P17 to P25 in OIR retinas. Knockdown of lncRNA-MM2P levels in vivo led to a significant reduction in the neovascular tufts and avascular areas in the retinas of OIR mice. Knockdown of lncRNA-MM2P levels in vitro suppressed the expression of M2 markers in macrophages. Moreover, we found a significant inhibition of avascular areas and neovascular tufts in OIR mice injected intravitreally with M2 macrophages treated by shRNA-MM2P. The cellular functions of proliferation, migration, and tube formation were significantly attenuated in HRECs cultured with a supernatant of shRNA-MM2P-treated M2 macrophages. Our results indicate that lncRNA-MM2P regulates retinal neovascularization by inducing M2 polarization of macrophages in OIR mice. Therefore, lncRNA-MM2P may be a potential molecular target for immunoregulation of retinal neovascularization.
Collapse
Affiliation(s)
- Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fan Xu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health, Nanning, Guangxi, 530021, China
| | - Fen Tang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health, Nanning, Guangxi, 530021, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Lee CC, Chiang MC, Chu SM, Wu WC, Ho MMC, Lien R. Clinical Risk Factors for Retinopathy of Prematurity Reactivation after Intravitreal Antivascular Endothelial Growth Factor Injection. J Pediatr 2024; 273:113913. [PMID: 38218371 DOI: 10.1016/j.jpeds.2024.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
OBJECTIVE To assess the rate and risk factors for reactivation of retinopathy of prematurity (ROP) after intravitreal injection (IVI) of antivascular endothelial growth factor (VEGF) agents. STUDY DESIGN Infants who received IVI therapy between 2017 and 2022 were enrolled and divided into 2 groups: those with and without ROP reactivation. Information on ROP variables and patient variables were analyzed using multivariable logistic regression. RESULTS A total of 114 infants with 223 eyes were enrolled in the study. The ROP reactivation rate was 11.4% of infants (9.9% of eyes). The mean duration of reactivation was 84 ± 45 days. Among the 223 eyes treated with IVI, reactivation rates were 6% for bevacizumab, 13.9% for aflibercept, and 22.2% for ranibizumab. A multivariable regression model showed that ranibizumab was an independent risk factor (OR 11.4, P = .008) for reactivation. Other risk factors included infants with periventricular leukomalacia (OR 13.8, P = .003), patent ductus arteriosus ligation (OR 10.7, P = .032), and infants who still required invasive mechanical ventilation on the day of IVI therapy (OR 7.0, P = .018). CONCLUSIONS All anti-VEGF agents carry a risk of ROP reactivation, with the risk being greater with ranibizumab 0.25 mg than with bevacizumab 0.625 mg. Reactivation of ROP should be assessed vigilantly, especially in those infants with increased risks. Future research to determine the optimal anti-VEGF selection and dosage in high-risk infants is warranted.
Collapse
Affiliation(s)
- Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Ming-Chou Chiang
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shih-Ming Chu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Margaret Ming-Chih Ho
- Department of Ophthalmology, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Reyin Lien
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
| |
Collapse
|
7
|
Fevereiro-Martins M, Santos AC, Marques-Neves C, Bicho M, Guimarães H. Retinopathy of Prematurity in Eight Portuguese Neonatal Intensive Care Units: Incidence, Risk Factors, and Progression-A Prospective Multicenter Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1154. [PMID: 39457121 PMCID: PMC11505647 DOI: 10.3390/children11101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND/OBJECTIVES Retinopathy of prematurity (ROP) is a retinal neovascular disease affecting preterm infants. Identifying risk factors for its development and progression is critical for effective screening and prevention. This study aimed to analyze the incidence of ROP and identify key risk factors for its development and progression. METHODS We conducted a prospective, observational cohort study on 455 neonates (gestational age [GA] < 32 weeks or birth weight < 1500 g) across eight Portuguese NICUs. RESULTS ROP incidence was 37.8%, with 4.6% requiring treatment. Multivariate analysis identified low GA and the number of red blood cell (RBC) transfusions as significant factors for ROP development and progression. After adjusting for these variables, platelet transfusions, high maximum fraction of inspired oxygen (FiO2) in the second week, and surfactant use remained significantly associated with ROP development, while early and late sepsis, maternal chronic hypertension, and delayed enteral nutrition were associated with progression to ROP requiring treatment. CONCLUSIONS These findings underscore the importance of addressing low GAs and adult RBC transfusions in ROP risk management and suggest that maximum FiO2, platelet transfusions, and sepsis also play crucial roles. Larger studies are needed to validate these results and explore preventive interventions, particularly regarding the impact of multiple adult RBC transfusions on fetal hemoglobin percentages.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Institute for Scientific Research Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
- Department of Ophthalmology, Cuf Descobertas Hospital, Rua Mário Botas, 1998-018 Lisboa, Portugal
| | - Ana Carolina Santos
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carlos Marques-Neves
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Center for the Study of Vision Sciences, University Ophthalmology Clinic, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisboa, Portugal
| | - Manuel Bicho
- Ecogenetics and Human Health Unit, Environmental Health Institute-ISAMB, Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Institute for Scientific Research Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisboa, Portugal
| | - Hercília Guimarães
- Department of Gynecology—Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | |
Collapse
|
8
|
Heo JI, Ryu J. Natural Products in the Treatment of Retinopathy of Prematurity: Exploring Therapeutic Potentials. Int J Mol Sci 2024; 25:8461. [PMID: 39126030 PMCID: PMC11313229 DOI: 10.3390/ijms25158461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a vascular disorder affecting the retinas of preterm infants. This condition arises when preterm infants in incubators are exposed to high oxygen levels, leading to oxidative stress, inflammatory responses, and a downregulation of vascular endothelial growth factors, which causes the loss of retinal microvascular capillaries. Upon returning to room air, the upregulation of vascular growth factors results in abnormal vascular growth of retinal endothelial cells. Without appropriate intervention, ROP can progress to blindness. The prevalence of ROP has risen, making it a significant cause of childhood blindness. Current treatments, such as laser therapy and various pharmacologic approaches, are limited by their potential for severe adverse effects. Therefore, a deeper understanding of ROP's pathophysiology and the development of innovative treatments are imperative. Natural products from plants, fungi, bacteria, and marine organisms have shown promise in treating various diseases and have gained attention in ROP research due to their minimal side effects and wide-ranging beneficial properties. This review discusses the roles and mechanisms of natural products that hold potential as therapeutic agents in ROP management.
Collapse
Affiliation(s)
| | - Juhee Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
9
|
Paradis H, Werdyani S, Zhai G, Gendron RL, Tabrizchi R, McGovern M, Jumper JM, Brinton D, Good WV. Genetic Variants of the Beta-Adrenergic Receptor Pathways as Both Risk and Protective Factors for Retinopathy of Prematurity. Am J Ophthalmol 2024; 263:179-187. [PMID: 38224928 DOI: 10.1016/j.ajo.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE There is strong evidence that genetic factors influence retinopathy of prematurity (ROP), a neovascular eye disease. It has been previously suggested that polymorphisms in the genes involved in β-adrenergic receptor (ADRβ) pathways could protect against ROP. Antagonists for the ADRβ are actively tested in clinical trials for ROP treatment, but not without controversy and safety concerns. This study was designed to assess whether genetic variations in components of the ADRβ signaling pathways associate with risk of developing ROP. DESIGN An observational case-control targeted genetic analysis. METHODS A study was carried out in premature participants with (n = 30) or without (n = 34) ROP and full-term controls (n = 20), who were divided into a discovery cohort and a validation cohort. ROP was defined using International Classification of Retinopathy of Prematurity criteria (ICROP). Targeted sequencing of 20 genes in the ADRβ pathways was performed in the discovery cohort. Polymerase chain reaction (PCR)/restriction enzyme analysis for some of the discovered ROP-associated variants was performed for validation of the results using the validation cohort. RESULTS The discovery cohort revealed 543 bi-allelic variants within 20 genes of the ADRβ pathways. Ten single-nucleotide variants (SNVs) in 5 genes including protein kinase A regulatory subunit 1α (PRKAR1A), rap guanine exchange factor 3 (RAPGEF3), adenylyl cyclase 4 (ADCY4), ADCY7, and ADCY9 were associated with ROP (P < .05). The most significant SNV was found in PRKAR1A (P = .001). Multiple variants located in the 3'-untranslated region (3'UTR) of RAPGEF3 were also associated with ROP (P < .05). PCR/restriction enzyme analysis of the 3'UTR of RAPGEF3 methodologically validated these findings. CONCLUSION SNVs in PRKAR1A may represent protective factors whereas SNVs in RAPGEF3 may represent risk factors for ROP. PRKAR1α has previously been implicated in retinal vascular development whereas the RAPGEF3 product has a role in the maintenance of vascular barrier function, 2 processes important in ROP. Multicenter validation of these newly discovered risk factors could lead to valuable tools for predicting and preventing the development of severe ROP.
Collapse
Affiliation(s)
- Hélène Paradis
- From the Division of BioMedical Sciences (H.P., S.W., G.Z., R.L.G., R.T.), Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - Salem Werdyani
- From the Division of BioMedical Sciences (H.P., S.W., G.Z., R.L.G., R.T.), Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - Guangju Zhai
- From the Division of BioMedical Sciences (H.P., S.W., G.Z., R.L.G., R.T.), Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - Robert L Gendron
- From the Division of BioMedical Sciences (H.P., S.W., G.Z., R.L.G., R.T.), Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - Reza Tabrizchi
- From the Division of BioMedical Sciences (H.P., S.W., G.Z., R.L.G., R.T.), Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - Margaret McGovern
- Smith Kettlewell Eye Research Institute (M.M., W.V.G.), San Francisco, California, USA
| | | | - Daniel Brinton
- East Bay Retina Consultants, Inc. (D.B.), Oakland, California, USA
| | - William V Good
- Smith Kettlewell Eye Research Institute (M.M., W.V.G.), San Francisco, California, USA.
| |
Collapse
|
10
|
Cammalleri M, Filippi L, Dal Monte M, Bagnoli P. A promising case of preclinical-clinical translation: β-adrenoceptor blockade from the oxygen-induced retinopathy model to retinopathy of prematurity. Front Physiol 2024; 15:1408605. [PMID: 38938747 PMCID: PMC11208707 DOI: 10.3389/fphys.2024.1408605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Although compartmentalization of the eye seems to promote its experimental manipulation, drug penetration to its posterior part is severely limited by hard barriers thus hindering drug development for eye diseases. In particular, angiogenesis-related retinal diseases share common mechanisms and are responsible for the majority of cases of blindness. Their prevalence is globally increasing mostly because of the increased incidence of systemic pathologies in the adult. Despite the number of preclinical findings demonstrating the efficacy of novel treatments, therapy of retinal neovascular diseases still remains confined to intravitreal anti-vascular endothelial growth factor treatments with some extension to anti-inflammatory therapy. In the mare magnum of preclinical findings aimed to develop novel avenues for future therapies, most compounds, despite their efficacy in experimental models, do not seem to meet the criteria for their therapeutic application. In particular, the groove between preclinical findings and their clinical application increases instead of decreasing and the attempt to bridging the gap between them creates intense frustration and a sense of defeat. In this complex scenario, we will discuss here the role that overactivation of the sympathetic system plays in retinal vessel proliferation in response to hypoxia using the oxygen-induced retinopathy (OIR) model. The potential application of the beta-adrenoceptor (β-AR) blockade with propranolol to the treatment of retinopathy of prematurity will be also discussed in light of preclinical findings in the OIR model and clinical trials using propranolol in preterm infants either per os or as eye drops.
Collapse
Affiliation(s)
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Bishnoi K, Prasad R, Upadhyay T, Mathurkar S. A Narrative Review on Managing Retinopathy of Prematurity: Insights Into Pathogenesis, Screening, and Treatment Strategies. Cureus 2024; 16:e56168. [PMID: 38618439 PMCID: PMC11015904 DOI: 10.7759/cureus.56168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a rare proliferative ocular condition that can happen in premature babies (born preterm <36 weeks) or who weigh <1.5 kg at birth (low birth weight babies). ROP is a major cause of childhood blindness. It is a premature disease since retina vascularization is completed only by 40 weeks of life. The survivability for preterm infants has increased owing to recent improvements in neonatal care during the past decade. As a result, the prevalence of ROP has risen concurrently. The abnormal development of blood vessels in the retina is the cause of this illness. It occurs in two phases, phases 1 and 2. Most preterm infants weighing <1.5 kg need supplemental oxygen for respiratory support at birth. This leads to the initiation of phase 1 (vasoconstrictive phase). Phase 1 is characterized by loss of maternal-fetal connection and hyperoxia due to supplemental oxygen therapy. Oxygen's vasoconstrictive and obliterative action is primarily observed in developing retinal vessels. The inhibition of vascular endothelial growth factor follows from this. Phase 2 (vasoproliferative phase) shows the dilatation and tortuosity of the bigger existing vessels together with neovascularization and proliferation of new vessels into the vitreous when the baby is shifted from respiratory support to room air. Now, the retina gets hypoxic, where the retina becomes more metabolically active but is yet minimally vascularized, leading to VEGF-induced vasoproliferation, which might result in retinal detachment. Patients with ROP face the danger of loss of vision. If correct and quick treatment is not provided, they might land into permanent blindness. Yet, ROP remains one of the most preventable causes of childhood blindness worldwide. Blindness caused by ROP can only be avoided if screening programs are readily available, pertinent, and appropriate. The initial stage in the therapy of ROP is the screening of premature neonates. Timely screening and management for ROP is important to avoid this irreversible loss of vision. The treatment is based on the severity of the disease. Management may include pharmacological interventions like intravitreal and anti-vascular endothelial growth factor and non-pharmacological interventions like laser surgery, vitrectomy, and scleral buckling. We conducted a thorough literature search of studies on pathogenesis, risk factors, classification, and various treatment options for retinopathy of prematurity in infants, using a mixture of pertinent keywords. Only those studies published in peer-reviewed journals between 2010 and 2023 and written in English were included. Duplicate studies, unavailable in full-text for free, or studies unrelated to our subject matter were excluded. After thoroughly evaluating the selected studies, the results were synthesized and presented narratively. This article sheds light on the pathogenesis of ROP, particularly its relation to oxygen use, screening, and potential therapeutic management of ROP. Today advances in screening techniques have improved the outcomes for infants with ROP. Still, ongoing research is needed to optimize management strategies and reduce the burden of this condition.
Collapse
Affiliation(s)
- Kratika Bishnoi
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanisha Upadhyay
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swapneel Mathurkar
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
12
|
Zhang L, Buonfiglio F, Fieß A, Pfeiffer N, Gericke A. Retinopathy of Prematurity-Targeting Hypoxic and Redox Signaling Pathways. Antioxidants (Basel) 2024; 13:148. [PMID: 38397746 PMCID: PMC10885953 DOI: 10.3390/antiox13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a proliferative vascular ailment affecting the retina. It is the main risk factor for visual impairment and blindness in infants and young children worldwide. If left undiagnosed and untreated, it can progress to retinal detachment and severe visual impairment. Geographical variations in ROP epidemiology have emerged over recent decades, attributable to differing levels of care provided to preterm infants across countries and regions. Our understanding of the causes of ROP, screening, diagnosis, treatment, and associated risk factors continues to advance. This review article aims to present the pathophysiological mechanisms of ROP, including its treatment. Specifically, it delves into the latest cutting-edge treatment approaches targeting hypoxia and redox signaling pathways for this condition.
Collapse
Affiliation(s)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (L.Z.); (F.B.); (A.F.); (N.P.)
| |
Collapse
|
13
|
Mandala VK, Urakurva AK, Gangadhari S, Kotha R. The Effects of Early Enteral and Parental Nutrition on Retinopathy of Prematurity: A Systematic Review. Cureus 2023; 15:e49029. [PMID: 38116356 PMCID: PMC10728573 DOI: 10.7759/cureus.49029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2023] [Indexed: 12/21/2023] Open
Abstract
The management of preterm newborns must consider the severe problem of retinopathy of prematurity (ROP). A systematic review has been conducted to effectively acknowledge how enteral and parenteral early nutrition affect the growth and progression of ROP. The study summarizes recent findings from various sources to give insight into the relationship between dietary practices and ROP risks. When untreated, retinopathy of prematurity (ROP) may cause severe vision loss or blindness in premature newborns. The latter two phases of ROP progression are the most serious. A child's early nutrition, both orally and intravenously, significantly impacts the severity and progression of ROP. This systematic review aims to examine the evidence linking early nutrition to ROP in premature infants. The study used Embase, Scopus, and PubMed to conduct our search. ROP, premature newborns, and nutrition were keywords used to find relevant papers. Nine research studies made it through the screening process and offered important information on the impact of diet on ROP. These studies support the idea that poor nutrition is a driving force behind the onset of ROP. The risk of ROP has been associated with postnatal development, hyperglycemia, polyunsaturated fatty acid levels, and the presence of breast milk. The outlook for ROP has also been discovered to be affected by the length of time the patient has received parenteral feeding. The incidence and severity of ROP may be mitigated by providing better nutrition to premature newborns. This comprehensive study concludes that early nutrition, both enteral and parenteral, substantially influences the development and progression of ROP in premature newborns. The significance of nutrition in newborn care is highlighted by the possibility that improved dietary methods might aid in preventing and treating this vision-threatening illness.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kotha
- Neonatology, Osmania Medical College, Hyderabad, IND
| |
Collapse
|
14
|
Fevereiro-Martins M, Santos AC, Marques-Neves C, Guimarães H, Bicho M. Complete blood count parameters as biomarkers of retinopathy of prematurity: a Portuguese multicenter study. Graefes Arch Clin Exp Ophthalmol 2023; 261:2997-3006. [PMID: 37129632 PMCID: PMC10543149 DOI: 10.1007/s00417-023-06072-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
PURPOSE To evaluate complete blood count (CBC) parameters in the first week of life as predictive biomarkers for the development of retinopathy of prematurity (ROP). METHODS Multicenter, prospective, observational study of a cohort of preterm infants born with gestational age (GA) < 32 weeks or birth weight < 1500 g in eight Portuguese neonatal intensive care units. All demographic, clinical, and laboratory data from the first week of life were collected. Univariate logistic regression was used to assess risk factors for ROP and then multivariate regression was performed. RESULTS A total of 455 infants were included in the study. The median GA was 29.6 weeks, and the median birth weight was 1295 g. One hundred and seventy-two infants (37.8%) developed ROP. Median values of erythrocytes (p < 0.001), hemoglobin (p < 0.001), hematocrit (p < 0.001), mean corpuscular hemoglobin concentration (p < 0.001), lymphocytes (p = 0.035), and platelets (p = 0.003) of the group of infants diagnosed with ROP any stage were lower than those without ROP. Mean corpuscular volume (MCV) (p = 0.044), red blood cell distribution width (RDW) (p < 0.001), erythroblasts (p < 0.001), neutrophils (p = 0.030), neutrophils-lymphocytes ratio (p = 0.028), and basophils (p = 0.003) were higher in the ROP group. Higher values of MCV, erythroblasts, and basophils remained significantly associated with ROP after multivariate regression. CONCLUSION In our cohort, the increase in erythroblasts, MCV, and basophils in the first week of life was significantly and independently associated with the development of ROP. These CBC parameters may be early predictive biomarkers for ROP.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisbon, Portugal
- Departamento de Oftalmologia, Hospital Cuf Descobertas, Rua Mário Botas, 1998-018 Lisbon, Portugal
| | - Ana Carolina Santos
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
| | - Carlos Marques-Neves
- Centro de Estudos das Ciências da Visão, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
| | - Hercília Guimarães
- Departamento de Ginecologia - Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Piso 1C, 1649-028 Lisbon, Portugal
- Instituto de Investigação Científica Bento da Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisbon, Portugal
| |
Collapse
|
15
|
Murugeswari P, Vinekar A, Prakalapakorn SG, Anandula VR, Subramani M, Vaidya TA, Nair AP, Jayadev C, Ghosh A, Kumaramanickavel G, Shetty R, Das D. Correlation between tear levels of vascular endothelial growth factor and vitamin D at retinopathy of prematurity stages in preterm infants. Sci Rep 2023; 13:16175. [PMID: 37759071 PMCID: PMC10533881 DOI: 10.1038/s41598-023-43338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Deregulation of vascular endothelial growth factor (VEGF) levels leads to retinopathy of prematurity (ROP). Vitamin D (VIT-D) is known to regulate VEGF in an oxygen dependent manner. The purpose of this study was to correlate tear levels of VEGF and VIT-D with different ROP stages in preterm infants. In this prospective cross-sectional study, we enrolled 104 pre-term infants. They were grouped into: Group-1 (Classical ROP) and Group-2 (Aggressive ROP), which were further subdivided into Group-1A (progressing), Group-1B (regressing), Group-2A (pre-treatment), and Group-2B (post-treatment). Tear VEGF and VIT-D levels and their association with different ROP stages were assessed. Stage 1 and stage 2 had higher whereas stage 3 had lower VEGF levels in Group-1B compared to Group-1A. Stage 1 and stage 3 showed higher levels of VIT-D with no difference in stage 2 in Group-1B compared to Group-1A., Group-2B showed higher VEGF and lower VIT-D levels compared to Group-2A. Presence of a positive correlation at an early stage (stage 1) of ROP and a negative correlation at a more advanced stage (stage 3) of ROP with VIT-D and VEGF implies stage-specific distinct signaling crosstalk. These findings suggest that VIT-D supplementation may have the potential to modify the course and outcome of ROP.
Collapse
Affiliation(s)
- Ponnalagu Murugeswari
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, 258/A Bommasandra Industrial Area, Bangalore, Karnataka, 560099, India
| | - Anand Vinekar
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangalore, India
| | - S Grace Prakalapakorn
- Department of Ophthalmology, Duke University, Durham, USA
- Department of Pediatrics, Duke University, Durham, USA
| | - Venkata Ramana Anandula
- Department of Molecular Diagnostics and Laboratory Services, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Murali Subramani
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangalore, India
| | | | | | - Chaitra Jayadev
- Department of Vitreoretinal Services, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | | | | | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, 258/A Bommasandra Industrial Area, Bangalore, Karnataka, 560099, India.
| |
Collapse
|
16
|
Xie EF, Hilkert Rodriguez S, Xie B, D’Souza M, Reem G, Sulakhe D, Skondra D. Identifying novel candidate compounds for therapeutic strategies in retinopathy of prematurity via computational drug-gene association analysis. Front Pediatr 2023; 11:1151239. [PMID: 37492605 PMCID: PMC10365641 DOI: 10.3389/fped.2023.1151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is the leading cause of preventable childhood blindness worldwide. Although interventions such as anti-VEGF and laser have high success rates in treating severe ROP, current treatment and preventative strategies still have their limitations. Thus, we aim to identify drugs and chemicals for ROP with comprehensive safety profiles and tolerability using a computational bioinformatics approach. Methods We generated a list of genes associated with ROP to date by querying PubMed Gene which draws from animal models, human studies, and genomic studies in the NCBI database. Gene enrichment analysis was performed on the ROP gene list with the ToppGene program which draws from multiple drug-gene interaction databases to predict compounds with significant associations to the ROP gene list. Compounds with significant toxicities or without known clinical indications were filtered out from the final drug list. Results The NCBI query identified 47 ROP genes with pharmacologic annotations present in ToppGene. Enrichment analysis revealed multiple drugs and chemical compounds related to the ROP gene list. The top ten most significant compounds associated with ROP include ascorbic acid, simvastatin, acetylcysteine, niacin, castor oil, penicillamine, curcumin, losartan, capsaicin, and metformin. Antioxidants, NSAIDs, antihypertensives, and anti-diabetics are the most common top drug classes derived from this analysis, and many of these compounds have potential to be readily repurposed for ROP as new prevention and treatment strategies. Conclusion This bioinformatics analysis creates an unbiased approach for drug discovery by identifying compounds associated to the known genes and pathways of ROP. While predictions from bioinformatic studies require preclinical/clinical studies to validate their results, this technique could certainly guide future investigations for pathologies like ROP.
Collapse
Affiliation(s)
- Edward F. Xie
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, IL, United States
| | - Sarah Hilkert Rodriguez
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, United States
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Mark D’Souza
- Center for Research Informatics, The University of Chicago, Chicago, IL, United States
| | - Gonnah Reem
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, United States
| | - Dinanath Sulakhe
- Center for Research Informatics, The University of Chicago, Chicago, IL, United States
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Borțea CI, Enatescu I, Dima M, Pantea M, Iacob ER, Dumitru C, Popescu A, Stoica F, Heredea RE, Iacob D. A Prospective Analysis of the Retinopathy of Prematurity Correlated with the Inflammatory Status of the Extremely Premature and Very Premature Neonates. Diagnostics (Basel) 2023; 13:2105. [PMID: 37371000 DOI: 10.3390/diagnostics13122105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Retinopathy of Prematurity (ROP) is a major cause of blindness in premature infants. This study aimed to evaluate the association between inflammatory markers and ROP development in extremely premature and very premature neonates and identify potential inflammatory biomarkers for ROP risk prediction. This prospective study was conducted from January 2021 to January 2023 in two clinical hospitals associated with the "Victor Babes" University of Medicine and Pharmacy Timisoara. The study population comprised neonates with a gestational age of less than 32 weeks. Various inflammatory markers, including total white blood cell count, polymorphonuclear leukocytes, C-reactive protein, interleukin-6, and lactate dehydrogenase, were analyzed from blood samples collected at birth and three days postnatally. ROP was diagnosed and classified following the International Classification of Retinopathy of Prematurity. The study included 48 neonates, 12 Extremely Premature Infants (EPI), and 36 Very Premature Infants (VPI). The EPI group had significantly higher mean interleukin-6 and lactate dehydrogenase levels at birth and three days postnatally than the VPI group. C-reactive protein levels at three days were significantly higher in the VPI group. Umbilical cord inflammation and ROP severity were found to have a statistically significant positive correlation. Half of the EPIs had moderate to severe ROP, significantly more than in the VPI group. The duration of oxygen supplementation, mechanical ventilation, Continuous Positive Airway Pressure (CPAP), gestational age less than 28 weeks, and umbilical cord inflammation at or above stage 3 were significant risk factors for developing ROP stage 2 or above. Elevated CRP and IL-6 were also significantly associated with an increased risk of developing ROP stage 2 or above, highlighting their potential as biomarkers for ROP risk prediction. This study suggests a significant association between inflammatory markers and ROP development in extremely premature and very premature neonates. These findings could contribute to the identification of potential inflammatory biomarkers for ROP risk prediction, improving early diagnosis and intervention strategies for this condition.
Collapse
Affiliation(s)
- Claudia Ioana Borțea
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ileana Enatescu
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Mirabela Dima
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Manuela Pantea
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Emil Radu Iacob
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alin Popescu
- Department of Obstetrics and Gynecology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florina Stoica
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Rodica Elena Heredea
- Department of Pathology, "Louis Turcanu" Children's Clinical Emergency Hospital, 300041 Timisoara, Romania
- Department of Clinical Practical Skills, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Daniela Iacob
- Department of Neonatology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
18
|
Ortega-Gutiérrez S. New Pharmacological Approaches for Rare Diseases. Int J Mol Sci 2023; 24:ijms24087275. [PMID: 37108436 PMCID: PMC10139002 DOI: 10.3390/ijms24087275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The expression "rare disease" describes a group of diseases whose individual prevalence is low (between 3.9 and 6.6 in 10,000 subjects depending on the country) but which in total affect up to the 3-6% of the worldwide population [...].
Collapse
Affiliation(s)
- Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
19
|
Bal-Öztürk A, Özcan-Bülbül E, Gültekin HE, Cecen B, Demir E, Zarepour A, Cetinel S, Zarrabi A. Application of Convergent Science and Technology toward Ocular Disease Treatment. Pharmaceuticals (Basel) 2023; 16:445. [PMID: 36986546 PMCID: PMC10053244 DOI: 10.3390/ph16030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Eyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul 34396, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Ece Özcan-Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Türkiye
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
20
|
Fu X, Zhao X, Weng A, Zhang Q. Comparative efficacy and safety of restrictive versus liberal transfusion thresholds in anemic preterm infants: a meta-analysis of 12 randomized controlled trials. Ann Hematol 2023; 102:283-297. [PMID: 36542102 PMCID: PMC9889497 DOI: 10.1007/s00277-022-05072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
The comparative efficacy and safety of restrictive with liberal transfusion thresholds remain controversial in anemic preterm infants. This meta-analysis aimed to compare the efficacy and safety of these two transfusion thresholds for anemic preterm infants. We searched PubMed, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI) for relevant randomized controlled trials (RCTs) comparing restrictive with liberal transfusion thresholds in anemic preterm infants through April 30, 2022. Two independent investigators screened literature, extracted data, and appraised the methodological quality of eligible studies. Meta-analysis was conducted using RevMan version 5.3.5. Twelve RCTs with 4380 preterm infants were included. Liberal transfusion threshold significantly increased the level of hemoglobin after transfusion (mean difference (MD): -10.03; 95% confidence interval (CI): -15.98 to -4.08; p=0.001; I2=94%) and hematocrit (MD: -3.62; 95%CI: -6.78 to -0.46; p=0.02; I2=80%) compared with restrictive transfusion. Infants' age at first transfusion in restrictive transfusion group was higher than that of infants in liberal transfusion group (MD: 5.08; 95%CI: 2.27 to7.89; p=0.004; I2=54%); however, restrictive transfusion was associated with more time on supplemental oxygen (MD: 3.56; 95%CI: 1.93 to 5.18; p<0.001; I2=62%) and ventilator or CPAP (MD: 3.31; 95%CI: 1.42 to 5.20; p=0.006; I2=75%). For the remaining outcomes, two transfusion strategies were comparable. Furthermore, a series of sensitivity analyses confirmed the robustness of the level of hemoglobin after transfusion, age at first transfusion, time on ventilator or CPAP, and safety outcomes. Evidence with substantial heterogeneity indicates that liberal and restrictive transfusion thresholds are effective and safe blood cell transfusion strategies in anemic preterm infants, but the liberal strategy may be more effective in shortening the length of necessary respiratory support.
Collapse
Affiliation(s)
- Xiaoling Fu
- Department of Blood Transfusion, Hainan Women and Children's Medical Center, Haikou, 570000, Hainan Province, China.
| | - Xingdan Zhao
- Department of Blood Transfusion, Hainan Women and Children's Medical Center, Haikou, 570000, Hainan Province, China
| | - Aihan Weng
- Department of Blood Transfusion, Hainan Women and Children's Medical Center, Haikou, 570000, Hainan Province, China
| | - Qian Zhang
- Department of Blood Transfusion, Hainan Women and Children's Medical Center, Haikou, 570000, Hainan Province, China
| |
Collapse
|
21
|
Bujoreanu Bezman L, Tiutiuca C, Totolici G, Carneciu N, Bujoreanu FC, Ciortea DA, Niculet E, Fulga A, Alexandru AM, Stan DJ, Nechita A. Latest Trends in Retinopathy of Prematurity: Research on Risk Factors, Diagnostic Methods and Therapies. Int J Gen Med 2023; 16:937-949. [PMID: 36942030 PMCID: PMC10024537 DOI: 10.2147/ijgm.s401122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder with an imminent risk of blindness, in cases where early diagnosis and treatment are not performed. The doctors' constant motivation to give these fragile beings a chance at life with optimal visual acuity has never stopped, since Terry first described this condition. Thus, throughout time, several specific advancements have been made in the management of ROP. Apart from the most known risk factors, this narrative review brings to light the latest research about new potential risk factors, such as: proteinuria, insulin-like growth factor 1 (IGF-1) and blood transfusions. Digital imaging has revolutionized the management of retinal pathologies, and it is more and more used in identifying and staging ROP, particularly in the disadvantaged regions by the means of telescreening. Moreover, optical coherence tomography (OCT) and automated diagnostic tools based on deep learning offer new perspectives on the ROP diagnosis. The new therapeutical trend based on the use of anti-VEGF agents is increasingly used in the treatment of ROP patients, and recent research sustains the theory according to which these agents do not interfere with the neurodevelopment of premature babies.
Collapse
Affiliation(s)
- Laura Bujoreanu Bezman
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Carmen Tiutiuca
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Correspondence: Carmen Tiutiuca, Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, 800008, Romania, Tel +40741330788, Email
| | - Geanina Totolici
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Nicoleta Carneciu
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Florin Ciprian Bujoreanu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Florin Ciprian Bujoreanu, Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, 800008, Romania, Tel +40741395844, Email
| | - Diana Andreea Ciortea
- Department of Pediatrics, “Sfantul Ioan” Emergency Clinical Hospital for Children, Galati, Romania
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Ana Fulga
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Anamaria Madalina Alexandru
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Department of Neonatology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
| | - Daniela Jicman Stan
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Aurel Nechita
- Department of Pediatrics, “Sfantul Ioan” Emergency Clinical Hospital for Children, Galati, Romania
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| |
Collapse
|
22
|
Kim H, Kim J, Ryu J. Noncoding RNAs as a novel approach to target retinopathy of prematurity. Front Pharmacol 2022; 13:1033341. [PMID: 36386230 PMCID: PMC9641647 DOI: 10.3389/fphar.2022.1033341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 06/21/2024] Open
Abstract
Retinopathy of prematurity (ROP), a vascular disease characterized by abnormal vessel development in the retina, has become a primary cause of blindness in children around the world. ROP can be developed during two different phases: vessel loss and vessel proliferation. Once preterm infants with immature retinal vessel growth are exposed to high level of oxygen inside the incubator, vessel loss can occur. When infants are exposed to room air, they may experience the proliferation of vessels in the retina. Although multiple factors are reported to be involved in the pathogenesis of ROP, including vaso-endothelial growth factors (VEGFs) and hypoxia-inducible factors, the pathogenesis of ROP is not completely understood. Although laser therapy and pharmacologic agents, such as anti-VEGF agents, have been commonly used to treat ROP, the incidence of ROP is rapidly rising. Given that current therapies can be invasive and long-term effects are not fully known, the search for novel therapeutic targets with less destructive properties needs to be considered. Within the last decade, the field of noncoding RNA therapy has shown potential as next-generation therapy to treat diverse diseases. In this review, we introduce various noncoding RNAs regulating ROP and discuss their role as potential therapeutic targets in ROP.
Collapse
Affiliation(s)
- Hyunjong Kim
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Jaesub Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|