1
|
Consens ME, Li B, Poetsch AR, Gilbert S. Genomic language models could transform medicine but not yet. NPJ Digit Med 2025; 8:212. [PMID: 40251342 PMCID: PMC12008430 DOI: 10.1038/s41746-025-01603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Affiliation(s)
- Micaela Elisa Consens
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Ben Li
- Division of Vascular Surgery, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine, University of Toronto, Toronto, ON, Canada
| | - Anna R Poetsch
- Biomedical Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität, Dresden, Germany
- National Center for Tumor Diseases (NCT) partner site Dresden, German Cancer Research Center (DKFZ), Dresden, Germany
| | - Stephen Gilbert
- Carl Gustav Carus University Hospital Dresden, Dresden University of Technology, Dresden, Germany.
- Else Kröner Fresenius Center for Digital Health, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
2
|
Jiang Y, Saeed TN, Alfarttoosi KH, Bishoyi AK, Rekha MM, Kundlas M, Jain B, Rizaev J, Taher WM, Alwan M, Jawad MJ, Ali Al-Nuaimi AM. The intersection of ferroptosis and non-coding RNAs: a novel approach to ovarian cancer. Eur J Med Res 2025; 30:300. [PMID: 40247379 PMCID: PMC12007203 DOI: 10.1186/s40001-025-02559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Understanding the core principles of ovarian cancer has been significantly improved through the exploration of Ferroptosis, a type of cell death triggered by iron that leads to an increase in lipid peroxides. Current research has shed light on the critical functions of non-coding RNAs, such as circRNAs, lncRNAs, and miRNAs, in regulating ferroptosis in ovarian cancer. The aim of this paper is to comprehensively analyze how ncRNAs influence the development of ferroptosis in ovarian cancer cells. In-depth exploration is undertaken to understand the intricate ways in which ncRNAs regulate essential elements of ferroptosis, including iron management and lipid peroxidation levels. We also investigate their significant involvement in the progression of this type of cellular demise. It should be emphasized that ncRNAs can impact the synthesis of crucial proteins, such as GPX4, a key contributor to the cellular defense against oxidation, and ACSL4, involved in lipid formation. In addition, we examine the correlation between ncRNAs and well-known pathways associated with oxidative stress and cell death. The consequences of these discoveries are noteworthy, since focusing on particular ncRNAs could potentially render ovarian cancer cells more vulnerable to ferroptosis, effectively combating drug resistance problems. This discussion highlights the growing significance of ncRNAs in governing ferroptosis and their potential as useful biomarkers and treatment targets for ovarian cancer. We intend to promote additional research into the involvement of ncRNAs in controlling ferroptosis, based on current findings, with the ultimate goal of informing targeted therapeutic strategies and improving long-term treatment outcomes for individuals suffering from OC.
Collapse
Affiliation(s)
- Youyi Jiang
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing, China
| | - Tamara Nazar Saeed
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Abdelgayed G, Hosni A, Abdel-Moneim A, Malik A, Zaky MY, Hasona NA. Integrated analysis of long non‑coding RNA megacluster, microRNA‑132 and microRNA‑133a and their implications for cardiovascular risk and kidney failure progression in diabetic patients. Exp Ther Med 2025; 29:35. [PMID: 39776891 PMCID: PMC11705225 DOI: 10.3892/etm.2024.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 01/11/2025] Open
Abstract
Inefficient control of elevated blood sugar levels can lead to certain health complications such as diabetic nephropathy (DN) and cardiovascular disease (CVD). The identification of effective biomarkers for monitoring diabetes was performed in the present study. The present study aimed to investigate the implications of long non-coding RNA megacluster (lnc-MGC), microRNA (miR)-132 and miR-133a, and their correlation with lactate dehydrogenase (LDH) activity and glycated hemoglobin (HbA1C) levels to identify biomarkers for the early diagnosis of diabetes mellitus, induced DN and CVD. The present study included a total of 200 patients with type 2 diabetes, as well as 40 healthy subjects as controls. The diabetic patients were classified into six groups based on their estimated HbA1c level, glomerular filtration rate and LDH activity, while the healthy controls constituted the seventh group. Diabetic patients exhibited significant increases in parameters related to diabetes as fasting blood sugar, HbA1c levels, cardiac injury and kidney failure. Furthermore, the expression levels of TNF-α were significantly increased in the diabetic groups compared with healthy controls. Diabetic patients with cardiovascular dysfunction showed significantly increased expression levels of miR-132, miR-133a and lnc-MGC, compared with the healthy group. The expression of circulating miR-132 in blood was low in the groups of diabetic patients compared with the healthy controls, and demonstrated a negative correlation with LDH and HbA1C levels. Expression levels of miR-132, miR-133a and lnc-MGC, along with their correlations with LDH and HbA1C levels, could be used to distinguish diabetic patients with reduced CVD from those at early stage diabetes, which indicated their potential as biomarkers for CV complications associated with diabetes mellitus in the future.
Collapse
Affiliation(s)
- Gehad Abdelgayed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Hosni
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 2457, Saudi Arabia
| | - Mohamed Y. Zaky
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
| | - Nabil A. Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Biochemistry Department, Beni-Suef National University, Beni-Suef 62511, Egypt
| |
Collapse
|
4
|
Ramachandran V, Potoyan DA. Molecular Drivers of RNA Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633842. [PMID: 39896463 PMCID: PMC11785085 DOI: 10.1101/2025.01.20.633842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA molecules are essential in orchestrating the assembly of biomolecular condensates and membraneless compartments in cells. Many condensates form via the association of RNA with proteins containing specific RNA binding motifs. However, recent reports indicate that low-complexity RNA sequences can self-assemble into condensate phases without protein assistance. Divalent cations significantly influence the thermodynamics and dynamics of RNA condensates, which exhibit base-specific lower-critical solution temperatures (LCST). The precise molecular origins of these temperatures remain elusive. In this study, we employ atomistic molecular simulations to elucidate the molecular driving forces governing the temperature-dependent phase behavior of RNA, providing new insights into the origins of LCST. Using RNA tetranucleotides and their chemically modified analogs, we map RNA condensates' equilibrium thermodynamic profiles and structural ensembles across various temperatures and ionic conditions. Our findings reveal that magnesium ions promote LCST behavior by inducing local order-disorder transitions within RNA structures. Consistent with experimental observations, we demonstrate that the thermal stability of RNA condensates follows the Poly(G) > Poly(A) > Poly(C) > Poly(U) order shaped by the interplay of base-stacking and hydrogen bonding interactions. Furthermore, our simulations show that ionic conditions and post-translational modifications can fine-tune RNA self-assembly and modulate condensate physical properties.
Collapse
Affiliation(s)
- V Ramachandran
- Department of Chemistry, Iowa State University, Ames, IA 50011
| | - D A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology
- Bioinformatics and Computational Biology Program, Iowa State University
| |
Collapse
|
5
|
Mustafin RN. Role of Retroelements in Frontotemporal Dementia Development. Front Biosci (Schol Ed) 2025; 17:25922. [PMID: 40150869 DOI: 10.31083/fbs25922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 03/29/2025]
Abstract
Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887).
Collapse
Affiliation(s)
- Rustam Nailevich Mustafin
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
6
|
Lee DH, Park EG, Kim JM, Shin HJ, Lee YJ, Jeong HS, Roh HY, Kim WR, Ha H, Kim SW, Choi YH, Kim HS. Genomic analyses of intricate interaction of TE-lncRNA overlapping genes with miRNAs in human diseases. Genes Genomics 2024; 46:1313-1325. [PMID: 39215947 DOI: 10.1007/s13258-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Transposable elements (TEs) are known to be inserted into genome to create transcript isoforms or to generate long non-coding RNA (lncRNA) sequences. The insertion of TEs generates a gene protein sequence within the genome, but also provides a microRNA (miRNA) regulatory region. OBJECTIVE To determine the effect of gene sequence changes caused by TE insertion on miRNA binding and to investigate the formation of an overlapping lncRNA that represses it. METHODS The distribution of overlapping regions between exons and TE regions with lncRNA was examined using the Bedtools. miRNAs that can bind to those overlapping regions were identified through the miRDB web program. For TE-lncRNA overlapping genes, bioinformatic analysis was conducted using DAVID web database. Differential expression analysis was conducted using data from the GEO dataset and TCGA. RESULTS Most TEs were distributed more frequently in untranslated regions than open reading frames. There were 30 annotated TE-lncRNA overlapping genes with same strand that could bind to the same miRNA. As a result of identifying the association between these 30 genes and diseases, TGFB2, FCGR2A, DCTN5, and IFI6 were associated with breast cancer, and HMGCS1, FRMD4A, EDNRB, and SNCA were associated with Alzheimer's disease. Analysis of the GEO and TCGA data showed that the relevant expression of miR-891a and miR-28, which bind to the TE overlapping region of DCTN5 and HMGCS1, decreased. CONCLUSION This study indicates that the interaction between TE-lncRNA overlapping genes and miRNAs can affect disease progression.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeon-Su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Schwarzenbach H. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Noncoding RNA 2024; 10:51. [PMID: 39452837 PMCID: PMC11510331 DOI: 10.3390/ncrna10050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Epithelial ovarian cancer (EOC) with its high death incidence rate is generally detected at advanced stages. During its progression, EOC often develops peritoneal metastasis aggravating the outcomes of EOC patients. Studies on non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), have analyzed the impact of miRNAs and circRNAs, along with their interaction among each other, on cancer cells. MiRNAs can act as oncogenes or tumor suppressors modulating post-transcriptional gene expression. There is accumulating evidence that circRNAs apply their stable, covalently closed, continuous circular structures to competitively inhibit miRNA function, and so act as competing endogenous RNAs (ceRNAs). This interplay between both ncRNAs participates in the malignity of a variety of cancer types, including EOC. In the current review, I describe the characteristics of miRNAs and circRNAs, and discuss their interplay with each other in the development, progression, and drug resistance of EOC. Sponging of miRNAs by circRNAs may be used as a biomarker and therapeutic target in EOC.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Kulski JK, Pfaff AL, Koks S. SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson's Progression Markers Initiative. Genes (Basel) 2024; 15:1185. [PMID: 39336776 PMCID: PMC11431313 DOI: 10.3390/genes15091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson's disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson's Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA 6009, Australia;
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
9
|
Stasevich EM, Simonova AV, Bogomolova EA, Murashko MM, Uvarova AN, Zheremyan EA, Korneev KV, Schwartz AM, Kuprash DV, Demin DE. Cut from the same cloth: RNAs transcribed from regulatory elements. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195049. [PMID: 38964653 DOI: 10.1016/j.bbagrm.2024.195049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
A certain degree of chromatin openness is necessary for the activity of transcription-regulating regions within the genome, facilitating accessibility to RNA polymerases and subsequent synthesis of regulatory element RNAs (regRNAs) from these regions. The rapidly increasing number of studies underscores the significance of regRNAs across diverse cellular processes and diseases, challenging the paradigm that these transcripts are non-functional transcriptional noise. This review explores the multifaceted roles of regRNAs in human cells, encompassing rather well-studied entities such as promoter RNAs and enhancer RNAs (eRNAs), while also providing insights into overshadowed silencer RNAs and insulator RNAs. Furthermore, we assess notable examples of shorter regRNAs, like miRNAs, snRNAs, and snoRNAs, playing important roles. Expanding our discourse, we deliberate on the potential usage of regRNAs as biomarkers and novel targets for cancer and other human diseases.
Collapse
Affiliation(s)
- E M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Simonova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - M M Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - A N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - K V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A M Schwartz
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - D V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D E Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Kang J, Rhee J, Wang C, Yang Y, Li G, Li H. Unlocking the dark matter: noncoding RNAs and RNA modifications in cardiac aging. Am J Physiol Heart Circ Physiol 2024; 326:H832-H844. [PMID: 38305752 PMCID: PMC11221808 DOI: 10.1152/ajpheart.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.
Collapse
Affiliation(s)
- Jiayi Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - James Rhee
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| | - Chunyan Wang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Yolander Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guoping Li
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
12
|
He T, Peng J, Yang S, Liu D, Gao S, Zhu Y, Chai Z, Lee BC, Wei R, Wang J, Liu Z, Jin J. SINE-Associated LncRNA SAWPA Regulates Porcine Zygotic Genome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307505. [PMID: 37984872 PMCID: PMC10787077 DOI: 10.1002/advs.202307505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Indexed: 11/22/2023]
Abstract
In mice, retrotransposon-associated long noncoding RNAs (lncRNA) play important regulatory roles in pre-implantation development; however, it is largely unknown whether they function in the pre-implantation development in pigs. The current study aims to screen for retrotransposon-associated lncRNA in porcine early embryos and identifies a porcine 8-cell embryo-specific SINE-associated nuclear long noncoding RNA named SAWPA. SAWPA is essential for porcine embryonic development as depletion of SAWPA results in a developmental arrest at the 8-cell stage, accompanied by the inhibition of the JNK-MAPK signaling pathway. Mechanistically, SAWPA works in trans as a transcription factor for JNK through the formation of an RNA-protein complex with HNRNPA1 and MED8 binding the SINE elements upstream of JNK. Therefore, as the first functional SINE-associated long noncoding RNAs in pigs, SAWPA provides novel insights for the mechanism research on retrotransposons in mammalian pre-implantation development.
Collapse
Affiliation(s)
- Tianyao He
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jinyu Peng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Shu Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Dongsong Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Shuang Gao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Yanlong Zhu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhuang Chai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Byeong Chun Lee
- Department of Theriogenology and BiotechnologyCollege of Veterinary MedicineSeoul National UniversitySeoul08826South Korea
| | - Renyue Wei
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jiaqiang Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| | - Jun‐Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang ProvinceCollege of Life ScienceNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
13
|
Milyaeva PA, Kukushkina IV, Kim AI, Nefedova LN. Stress Induced Activation of LTR Retrotransposons in the Drosophila melanogaster Genome. Life (Basel) 2023; 13:2272. [PMID: 38137873 PMCID: PMC10745035 DOI: 10.3390/life13122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Retrotransposons with long terminal repeats (LTR retrotransposons) are widespread in all groups of eukaryotes and are often both the cause of new mutations and the source of new sequences. Apart from their high activity in generative and differentiation-stage tissues, LTR retrotransposons also become more active in response to different stressors. The precise causes of LTR retrotransposons' activation in response to stress, however, have not yet been thoroughly investigated. Methods: We used RT-PCR to investigate the transcriptional profile of LTR retrotransposons and piRNA clusters in response to oxidative and chronic heat stresses. We used Oxford Nanopore sequencing to investigate the genomic environment of new insertions of the retrotransposons. We used bioinformatics methods to find the stress-induced transcription factor binding sites in LTR retrotransposons. Results: We studied the transposition activity and transcription level of LTR retrotransposons in response to oxidative and chronic heat stress and assessed the contribution of various factors that can affect the increase in their expression under stress conditions: the state of the piRNA-interference system, the influence of the genomic environment on individual copies, and the presence of the stress-induced transcription factor binding sites in retrotransposon sequences. Conclusions: The main reason for the activation of LTR retrotransposons under stress conditions is the presence of transcription factor binding sites in their regulatory sequences, which are triggered in response to stress and are necessary for tissue regeneration processes. Stress-induced transposable element activation can function as a trigger mechanism, triggering multiple signal pathways and resulting in a polyvariant cell response.
Collapse
Affiliation(s)
- Polina A. Milyaeva
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (P.A.M.); (I.V.K.); (A.I.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Longgang District, Shenzhen 518172, China
| | - Inna V. Kukushkina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (P.A.M.); (I.V.K.); (A.I.K.)
| | - Alexander I. Kim
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (P.A.M.); (I.V.K.); (A.I.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Longgang District, Shenzhen 518172, China
| | - Lidia N. Nefedova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (P.A.M.); (I.V.K.); (A.I.K.)
| |
Collapse
|
14
|
Park EG, Lee YJ, Huh JW, Park SJ, Imai H, Kim WR, Lee DH, Kim JM, Shin HJ, Kim HS. Identification of microRNAs Derived from Transposable Elements in the Macaca mulatta (Rhesus Monkey) Genome. Genes (Basel) 2023; 14:1984. [PMID: 38002927 PMCID: PMC10671384 DOI: 10.3390/genes14111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Transposable elements (TEs) are mobile DNA entities that can move within the host genome. Over long periods of evolutionary time, TEs are typically silenced via the accumulation of mutations in the genome, ultimately resulting in their immobilization. However, they still play an important role in the host genome by acting as regulatory elements. They influence host transcription in various ways, one of which as the origin of the generation of microRNAs (miRNAs), which are so-called miRNAs derived from TEs (MDTEs). miRNAs are small non-coding RNAs that are involved in many biological processes by regulating gene expression at the post-transcriptional level. Here, we identified MDTEs in the Macaca mulatta (rhesus monkey) genome, which is phylogenetically close species to humans, based on the genome coordinates of miRNAs and TEs. The expression of 5 out of 17 MDTEs that were exclusively registered in M. mulatta from the miRBase database (v22) was examined via quantitative polymerase chain reaction (qPCR). Moreover, Gene Ontology analysis was performed to examine the functional implications of the putative target genes of the five MDTEs.
Collapse
Affiliation(s)
- Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.H.); (S.-J.P.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.H.); (S.-J.P.)
| | - Hiroo Imai
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Park EG, Lee DH, Kim WR, Lee YJ, Bae WH, Kim JM, Shin HJ, Ha H, Yi JM, Cho SG, Choi YH, Leem SH, Cha HJ, Kim SW, Kim HS. Human Endogenous Retrovirus-H-Derived miR-4454 Inhibits the Expression of DNAJB4 and SASH1 in Non-Muscle-Invasive Bladder Cancer. Genes (Basel) 2023; 14:1410. [PMID: 37510314 PMCID: PMC10379226 DOI: 10.3390/genes14071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially cancer. A few studies have revealed that long non-coding RNAs that are transcribed from HERV sequences affect cancer progression. However, there is no study on microRNAs derived from HERVs related to cancer. In this study, we identified 29 microRNAs (miRNAs) derived from HERV sequences in the human genome. In particular, we discovered that miR-4454, which is HERV-H-derived miRNA, was upregulated in non-muscle-invasive bladder cancer (NMIBC) cells. To figure out the effects of upregulated miR-4454 in NMIBC, genes whose expression was downregulated in NMIBC, as well as tumor suppressor genes, were selected as putative target genes of miR-4454. The dual-luciferase assay was used to determine the negative relationship between miR-4454 and its target genes, DNAJB4 and SASH1, and they were confirmed to be promising target genes of miR-4454. Taken together, this study suggests that the upregulation of miR-4454 derived from HERV-H in NMIBC reduces the expression of the tumor suppressor genes, DNAJB4 and SASH1, to promote NMIBC progression.
Collapse
Affiliation(s)
- Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Ssang Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea;
| | - Sun Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea;
| | - Hee Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Republic of Korea;
| | - Sang Woo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| | - Heui Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
16
|
Nepita I, Piazza S, Ruglioni M, Cristiani S, Bosurgi E, Salvadori T, Vicidomini G, Diaspro A, Castello M, Cerase A, Bianchini P, Storti B, Bizzarri R. On the Advent of Super-Resolution Microscopy in the Realm of Polycomb Proteins. BIOLOGY 2023; 12:374. [PMID: 36979066 PMCID: PMC10044799 DOI: 10.3390/biology12030374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting, as the 3D arrangement of chromatin is implicated in multiple regulatory mechanisms. In this context, polycomb group (PcG) proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription by combining chemical modifications of target histones with physical crosslinking of distal genomic regions and phase separation. The recent development of super-resolution microscopy (SRM) has strongly contributed to improving our comprehension of several aspects of nano-/mesoscale (10-200 nm) chromatin domains. Here, we review the current state-of-the-art SRM applied to PcG proteins, showing that the application of SRM to PcG activity and organization is still quite limited and mainly focused on the 3D assembly of PcG-controlled genomic loci. In this context, SRM approaches have mostly been applied to multilabel fluorescence in situ hybridization (FISH). However, SRM data have complemented the maps obtained from chromosome capture experiments and have opened a new window to observe how 3D chromatin topology is modulated by PcGs.
Collapse
Affiliation(s)
- Irene Nepita
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
| | - Simonluca Piazza
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- R&D Department, Genoa Instruments s.r.l., Via E. Melen 83, 16152 Genova, Italy
| | - Martina Ruglioni
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Sofia Cristiani
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Emanuele Bosurgi
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Tiziano Salvadori
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Marco Castello
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- R&D Department, Genoa Instruments s.r.l., Via E. Melen 83, 16152 Genova, Italy
| | - Andrea Cerase
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Strada Statale dell’Abetone Brennero 4, 56123 Pisa, Italy
| | - Paolo Bianchini
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ranieri Bizzarri
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|