1
|
Uyar R, Turgut Y, Çelik HT, Ünal MA, Kuzukıran Ö, Özyüncü Ö, Ceylan A, Çinar ÖÖ, Boztepe ÜG, Özdağ H, Filazi A, Yurdakök-Di Kmen B. Effects of DDT and DDE on placental cholinergic receptors. Reprod Toxicol 2024; 126:108588. [PMID: 38615785 DOI: 10.1016/j.reprotox.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The placental cholinergic system; known as an important factor in intracellular metabolic activities, regulation of placental vascular tone, placental development, and neurotransmission; can be affected by persistent organic pesticides, particularly organochlorine pesticides(OCPs), which can influence various epigenetic regulations and molecular pathways. Although OCPs are legally prohibited, trace amounts of the persistent dichlorodiphenyltrichloroethane(DDT) are still found in the environment, making prenatal exposure inevitable. In this study, the effects of 2,4'-DDT and 4,4'-DDT; and its breakdown product 4,4'-DDE in the environment on placental cholinergic system were evaluated with regards to cholinergic genes. 40 human placentas were screened, where 42,50% (17 samples) were found to be positive for the tested compounds. Average concentrations were 10.44 μg/kg; 15.07 μg/kg and 189,42 μg/kg for 4,4'-DDE; 2,4'-DDT and 4,4'-DDT respectively. RNA-Seq results revealed 2396 differentially expressed genes in positive samples; while an increase in CHRM1,CHRNA1,CHRNG and CHRNA2 genes at 1.28, 1.49, 1.59 and 0.4 fold change were found(p<0028). The increase for CHRM1 was also confirmed in tissue samples with immunohistochemistry. In vitro assays using HTR8/SVneo cells; revealed an increase in mRNA expression of CHRM1, CHRM3 and CHRN1 in DDT and DDE treated groups; which was also confirmed through western blot assays. An increase in the expression of CHRM1,CHRNA1, CHRNG(p<0001) and CHRNA2(p<0,05) were found from the OCPs exposed and non exposed groups.The present study reveals that intrauterine exposure to DDT affects the placental cholinergic system mainly through increased expression of muscarinic receptors. This increase in receptor expression is expected to enhance the sensitivity of the placental cholinergic system to acetylcholine.
Collapse
Affiliation(s)
- Recep Uyar
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye.
| | - Yağmur Turgut
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - H Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, Altindag, Ankara 06230, Turkey
| | - M Altay Ünal
- Ankara University, Institute of Stem Cell, Ankara 06520, Turkey
| | - Özgür Kuzukıran
- Çankırı Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Çankırı, Turkey
| | - Özgür Özyüncü
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Altindag, Ankara 06230, Turkey
| | - Ahmet Ceylan
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Özge Özgenç Çinar
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Ümmü Gülsüm Boztepe
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - Hilal Özdağ
- Ankara University Biotechnology Institute, Ankara 06135, Turkey
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| | - Begüm Yurdakök-Di Kmen
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| |
Collapse
|
2
|
Ribeiro LAF, Dos Santos IBF, Ferraz CG, de Souza-Neta LC, Silva VR, Santos LDS, Bezerra DP, Soares MBP, Zambotti-Villela L, Colepicolo P, Ferreira AG, Araújo FM, Ribeiro PR. Bioactive compounds from Vellozia pyrantha A.A.Conc: A metabolomics and multivariate statistical analysis approach. Fitoterapia 2023; 171:105686. [PMID: 37748714 DOI: 10.1016/j.fitote.2023.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
The chemical composition of V. pyrantha resin (VpR) and fractions (VpFr1-7 and VpWS) were assessed by LC-MS and NMR. Twenty-eight metabolites were identified, including 16 diterpenoids, seven nor-diterpenoids, one fatty acid, one bis-diterpenoid, one steroid, one flavonoid, and one triterpenoid. The pharmacological potential of VpR, VpFr1-7, and isolated compounds was assessed by determining their antioxidant, antimicrobial, and cytotoxic activities. VpFr4 (IC50 = 205.48 ± 3.37 μg.mL-1) had the highest antioxidant activity, whereas VpFr6 (IC50 = 842.79 ± 10.23 μg.mL-1) had the lowest. The resin was only active against Staphylococcus aureus (MIC 62.5 μg.mL-1) and Salmonella choleraesius (MIC and MFC 500 μg.mL-1), but fractions were enriched with antibacterial compounds. V. pyrantha resin and fractions showed great cytotoxic activity against HCT116 (IC50 = 20.08 μg.mL-1), HepG2 (IC50 = 20.50 μg.mL-1), and B16-F10 (12.17 μg.mL-1) cell lines. Multivariate statistical analysis was used as a powerful tool to pinpoint possible metabolites responsible for the observed activities.
Collapse
Affiliation(s)
- Luiz A F Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Iago B F Dos Santos
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Lourdes C de Souza-Neta
- Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil
| | | | | | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio G Ferreira
- Laboratório de Ressonância Magnética Nuclear, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Floricéa M Araújo
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil.
| |
Collapse
|
3
|
Muñoz JP, Calaf GM. Acetylcholine, Another Factor in Breast Cancer. BIOLOGY 2023; 12:1418. [PMID: 37998017 PMCID: PMC10669196 DOI: 10.3390/biology12111418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Acetylcholine (ACh) is a neurotransmitter that regulates multiple functions in the nervous system, and emerging evidence indicates that it could play a role in cancer progression. However, this function is controversial. Previously, we showed that organophosphorus pesticides decreased the levels of the enzyme acetylcholinesterase in vivo, increasing ACh serum levels and the formation of tumors in the mammary glands of rats. Furthermore, we showed that ACh exposure in breast cancer cell lines induced overexpression of estrogen receptor alpha (ERα), a key protein described as the master regulator in breast cancer. Therefore, here, we hypothesize that ACh alters the ERα activity through a ligand-independent mechanism. The results here reveal that the physiological concentration of ACh leads to the release of Ca+2 and the activity of MAPK/ERK and PI3K/Akt pathways. These changes are associated with an induction of p-ERα and its recruitment to the nucleus. However, ACh fails to induce overexpression of estrogen-responsive genes, suggesting a different activation mechanism than that of 17ß-estradiol. Finally, ACh promotes the viability of breast cancer cell lines in an ERα-dependent manner and induces the overexpression of some EMT markers. In summary, our results show that ACh promotes breast cancer cell proliferation and ERα activity, possibly in a ligand-independent manner, suggesting its putative role in breast cancer progression.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile;
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
4
|
Beta-Caryophyllene Enhances the Anti-Tumor Activity of Cisplatin in Lung Cancer Cell Lines through Regulating Cell Cycle and Apoptosis Signaling Molecules. Molecules 2022; 27:molecules27238354. [PMID: 36500446 PMCID: PMC9735510 DOI: 10.3390/molecules27238354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Beta-Caryophyllene (BCP), a natural bicyclic sesquiterpenes, is an abundant biomolecule in red pepper and other plants. Recently, it was reported to reduce the growth and the proliferation as well as enhance the apoptosis in numerous cancer cells, including colorectal, ovarian, bladder cancer and lung cancer. On the other hand, the combination therapy of cisplatin (CDDP) with other phytochemical compounds has synergistically enhanced the killing effect of CDDP on several types of cancer. In the current model, we have tested the role of BCP in enhancing the anti-tumor activity of CDDP on lung cancer cell lines. The results showed that BCP is not toxic at moderate doses and it can prevent lung cancer progression in doses above 75 µM. However, when being combined with CDDP, BCP improved the former chemotherapeutic function through regulating cell cycle, apoptosis and EMT signaling molecules. Gene and protein expression analysis showed that the combined treatment of CDDP and BCP significantly upregulated the level of the cyclin-dependent kinase inhibitor, CDKN1A, and the inhibitor of the apoptosis, BCL-xl2. In addition, the combination treatment reduced the protein level of the apoptosis regulator, BCL-2. Moreover, BCP appears to prohibit the EMT process that is associated with CDDP chemotherapy since the combination treatment induced a significant increase in the level of the epithelial cell marker E-cad that was reduced in CDDP-treated cells. In agreement with that, the combined treatment managed to modulate the effect of CDDP on the mesenchymal transcription factor ZEB-2. Additionally, molecular docking has been conducted to check the virtual interaction of BCP with these and other signaling molecules, but only cyclin-dependent kinase CDK6 was found to virtually bind with BCP, and at four sites with higher and stable biding energy (-7.8). Together, these data indicate that BCP enhances CDDP chemotherapeutic function through regulating the cell cycle, the apoptosis and EMT signaling molecules.
Collapse
|