1
|
Mérida-García R, Gálvez S, Solís I, Martínez-Moreno F, Camino C, Soriano JM, Sansaloni C, Ammar K, Bentley AR, Gonzalez-Dugo V, Zarco-Tejada PJ, Hernandez P. High-throughput phenotyping using hyperspectral indicators supports the genetic dissection of yield in durum wheat grown under heat and drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1470520. [PMID: 39649812 PMCID: PMC11620856 DOI: 10.3389/fpls.2024.1470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 12/11/2024]
Abstract
High-throughput phenotyping (HTP) provides new opportunities for efficiently dissecting the genetic basis of drought-adaptive traits, which is essential in current wheat breeding programs. The combined use of HTP and genome-wide association (GWAS) approaches has been useful in the assessment of complex traits such as yield, under field stress conditions including heat and drought. The aim of this study was to identify molecular markers associated with yield (YLD) in elite durum wheat that could be explained using hyperspectral indices (HSIs) under drought field conditions in Mediterranean environments in Southern Spain. The HSIs were obtained from hyperspectral imagery collected during the pre-anthesis and anthesis crop stages using an airborne platform. A panel of 536 durum wheat lines were genotyped by sequencing (GBS, DArTseq) to determine population structure, revealing a lack of genetic structure in the breeding germplasm. The material was phenotyped for YLD and 19 HSIs for six growing seasons under drought field conditions at two locations in Andalusia, in southern Spain. GWAS analysis identified 740 significant marker-trait associations (MTAs) across all the durum wheat chromosomes, several of which were common for YLD and the HSIs, and can potentially be integrated into breeding programs. Candidate gene (CG) analysis uncovered genes related to important plant processes such as photosynthesis, regulatory biological processes, and plant abiotic stress tolerance. These results are novel in that they combine high-resolution hyperspectral imaging at the field scale with GWAS analysis in wheat. They also support the use of HSIs as useful tools for identifying chromosomal regions related to the heat and drought stress response in wheat, and pave the way for the integration of field HTP in wheat breeding programs.
Collapse
Affiliation(s)
- Rosa Mérida-García
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Ignacio Solís
- Department of Agronomy, ETSIA (University of Seville), Seville, Spain
| | | | - Carlos Camino
- European Commission (EC), Joint Research Centre (JRC), Ispra, Italy
| | - Jose Miguel Soriano
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - AGROTECNIO, Lleida, Spain
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México, Mexico
| | - Alison R. Bentley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Victoria Gonzalez-Dugo
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pablo J. Zarco-Tejada
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science (FoS), and Faculty of Engineering, and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
2
|
Zotova L, Zhumalin A, Gajimuradova A, Zhirnova I, Nuralov A, Zargar M, Serikbay D, Chen L, Savin T, Rysbekova A, Zhao Z. Studying the influence of TaGW8 and TaGS5-3A genes on the yield of soft spring wheat in arid climate conditions of the Republic of Kazakhstan. BRAZ J BIOL 2024; 84:e286189. [PMID: 39230085 DOI: 10.1590/1519-6984.286189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 09/05/2024] Open
Abstract
Drought is a primary ecological stress limiting wheat yield in water-deficient regions. Conducting targeted genetic selection of wheat cultivars can expedite the adaptation process of wheat to the climatic conditions of the region, allowing for the identification of high-yielding varieties with stable genetic traits. This study investigated the impact of the TaGW8 and TaGS3A genes, known for their contribution to wheat productivity. The effective productivity genes TaGW8-B1b/B1a and the TaGS5-3A-T genome exert a 32.8% influence on the variability of the 1000 grain weight (TGW) trait. This influence stems from both individual genes and their interactions, with at least 17.5% of TGW variability explained by the gene combinations examined in the study. Notably, the TaGS5-3A-T gene exhibits a significant positive correlation with total yield, exceeding 63%. The integration of these productivity genes, based on field phenotypic data, has resulted in an overall yield increase of selected samples by 0.8 tons/ha compared to the country's average multi-year indicator.
Collapse
Affiliation(s)
- L Zotova
- S. Seifullin Kazakh Agrotechnical Research University, Faculty of Agronomy, Department of Plant Production, Astana, Kazakhstan
| | - A Zhumalin
- S. Seifullin Kazakh Agrotechnical Research University, Faculty of Agronomy, Department of Plant Production, Astana, Kazakhstan
| | - A Gajimuradova
- S. Seifullin Kazakh Agrotechnical Research University, Faculty of Agronomy, Department of Plant Production, Astana, Kazakhstan
| | - I Zhirnova
- A.I. Barayev Research and Production Centre for Grain Farming, Shortandy, Kazakhstan
| | - A Nuralov
- S. Seifullin Kazakh Agrotechnical Research University, Faculty of Agronomy, Department of Plant Production, Astana, Kazakhstan
| | - M Zargar
- RUDN University, Institute of Agriculture, Department of Agrobiotechnology, Moscow, Russia
| | - D Serikbay
- S. Seifullin Kazakh Agrotechnical Research University, Faculty of Agronomy, Department of Plant Production, Astana, Kazakhstan
| | - L Chen
- Northwest A&F University, College of Life Science, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - T Savin
- A.I. Barayev Research and Production Centre for Grain Farming, Shortandy, Kazakhstan
| | - A Rysbekova
- S. Seifullin Kazakh Agrotechnical Research University, Faculty of Agronomy, Department of Plant Production, Astana, Kazakhstan
| | - Z Zhao
- Northwest A&F University, College of Life Science, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
3
|
Delen Y, Palali-Delen S, Xu G, Neji M, Yang J, Dweikat I. Dissecting the Genetic Architecture of Morphological Traits in Sunflower ( Helianthus annuus L.). Genes (Basel) 2024; 15:950. [PMID: 39062729 PMCID: PMC11275413 DOI: 10.3390/genes15070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The sunflower (Helianthus annuus L.) is one of the most essential oil crops in the world. Several component traits, including flowering time, plant height, stem diameter, seed weight, and kernel weight, determine sunflower seed and oil yield. Although the genetic mechanisms governing the variation of these yield-related traits have been studied using various approaches, genome-wide association studies (GWAS) have not been widely applied to sunflowers. In this study, a set of 342 sunflower accessions was evaluated in 2019 and 2020 using an incomplete randomized block design, and GWAS was conducted utilizing two complementary approaches: the mixed linear model (MLM) and the fixed and random model circulating probability unification (farmCPU) model by fitting 226,779 high-quality SNPs. As a result, GWAS identified a number of trait-associated SNPs. Those SNPs were located close to several genes that may serve as a basis for further molecular characterization and provide promising targets for sunflower yield improvement.
Collapse
Affiliation(s)
- Yavuz Delen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
| | - Semra Palali-Delen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Gen Xu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Mohamed Neji
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
| |
Collapse
|
4
|
Xu H, Wang Z, Wang F, Hu X, Ma C, Jiang H, Xie C, Gao Y, Ding G, Zhao C, Qin R, Cui D, Sun H, Cui F, Wu Y. Genome-wide association study and genomic selection of spike-related traits in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:131. [PMID: 38748046 DOI: 10.1007/s00122-024-04640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/27/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE Identification of 337 stable MTAs for wheat spike-related traits improved model accuracy, and favorable alleles of MTA259 and MTA64 increased grain weight and yield per plant. Wheat (Triticum aestivum L.) is one of the three primary global, staple crops. Improving spike-related traits in wheat is crucial for optimizing spike and plant morphology, ultimately leading to increased grain yield. Here, we performed a genome-wide association study using a dataset of 24,889 high-quality unique single-nucleotide polymorphisms (SNPs) and phenotypic data from 314 wheat accessions across eight diverse environments. In total, 337 stable and significant marker-trait associations (MTAs) related to spike-related traits were identified. MTA259 and MTA64 were consistently detected in seven and six environments, respectively. The presence of favorable alleles associated with MTA259 and MTA64 significantly reduced wheat spike exsertion length and spike length, while enhancing thousand kernel weight and yield per plant. Combined gene expression and network analyses identified TraesCS6D03G0692300 and TraesCS6D03G0692700 as candidate genes for MTA259 and TraesCS2D03G0111700 and TraesCS2D03G0112500 for MTA64. The identified MTAs significantly improved the prediction accuracy of each model compared with using all the SNPs, and the random forest model was optimal for genome selection. Additionally, the eight stable and major MTAs, including MTA259, MTA64, MTA66, MTA94, MTA110, MTA165, MTA180, and MTA164, were converted into cost-effective and efficient detection markers. This study provided valuable genetic resources and reliable molecular markers for wheat breeding programs.
Collapse
Affiliation(s)
- Huiyuan Xu
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Zixu Wang
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Faxiang Wang
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Xinrong Hu
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Chengxue Ma
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Huijiao Jiang
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Chang Xie
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Yuhang Gao
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Guangshuo Ding
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Chunhua Zhao
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Ran Qin
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China
| | - Dezhou Cui
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Key Laboratory of Wheat Biology and Genetics and Breeding in Northern Huang-Huai River Plain, Ministry of Agriculture and Rural Affairs/Shandong Technology Innovation Center of Wheat/Jinan Key Laboratory of Wheat Genetic Improvement, Jinan, Shandong, China
| | - Han Sun
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
| | - Fa Cui
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
| | - Yongzhen Wu
- College of Agriculture, Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, Yantai, Shandong, China.
| |
Collapse
|
5
|
Leber R, Heuberger M, Widrig V, Jung E, Paux E, Keller B, Sánchez-Martín J. A diverse panel of 755 bread wheat accessions harbors untapped genetic diversity in landraces and reveals novel genetic regions conferring powdery mildew resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:88. [PMID: 38532180 PMCID: PMC10965746 DOI: 10.1007/s00122-024-04582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
KEY MESSAGE A bread wheat panel reveals rich genetic diversity in Turkish, Pakistani and Iranian landraces and novel resistance loci to diverse powdery mildew isolates via subsetting approaches in association studies. Wheat breeding for disease resistance relies on the availability and use of diverse genetic resources. More than 800,000 wheat accessions are globally conserved in gene banks, but they are mostly uncharacterized for the presence of resistance genes and their potential for agriculture. Based on the selective reduction of previously assembled collections for allele mining for disease resistance, we assembled a trait-customized panel of 755 geographically diverse bread wheat accessions with a focus on landraces, called the LandracePLUS panel. Population structure analysis of this panel based on the TaBW35K SNP array revealed an increased genetic diversity compared to 632 landraces genotyped in an earlier study and 17 high-quality sequenced wheat accessions. The additional genetic diversity found here mostly originated from Turkish, Iranian and Pakistani landraces. We characterized the LandracePLUS panel for resistance to ten diverse isolates of the fungal pathogen powdery mildew. Performing genome-wide association studies and dividing the panel further by a targeted subsetting approach for accessions of distinct geographical origin, we detected several known and already cloned genes, including the Pm2a gene. In addition, we identified 22 putatively novel powdery mildew resistance loci that represent useful sources for resistance breeding and for research on the mildew-wheat pathosystem. Our study shows the value of assembling trait-customized collections and utilizing a diverse range of pathogen races to detect novel loci. It further highlights the importance of integrating landraces of different geographical origins into future diversity studies.
Collapse
Affiliation(s)
- Rebecca Leber
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37007, Salamanca, Spain
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Etienne Paux
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
- VetAgro Sup Campus Agronomique, 63370, Lempdes, France
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Biswas MK. Emerging Horizons in Plant Genetics and Breeding. Int J Mol Sci 2023; 24:11621. [PMID: 37511380 PMCID: PMC10380994 DOI: 10.3390/ijms241411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Plant genetics and breeding have made significant progress in recent years, especially with the emergence of genomics [...].
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
7
|
Liu Y, Shen K, Yin C, Xu X, Yu X, Ye B, Sun Z, Dong J, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Wang Z, Wu H, Liu D, Zhang L, Shen L, Hao Y, Lu F, Guo Z. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits. Genome Biol 2023; 24:114. [PMID: 37173729 PMCID: PMC10176713 DOI: 10.1186/s13059-023-02932-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Plant architecture associated with increased grain yield and adaptation to the local environments is selected during wheat (Triticum aestivum) breeding. The internode length of individual stems and tiller length of individual plants are important for the determination of plant architecture. However, few studies have explored the genetic basis of these traits. RESULTS Here, we conduct a genome-wide association study (GWAS) to dissect the genetic basis of geographical differentiation of these traits in 306 worldwide wheat accessions including both landraces and traditional varieties. We determine the changes of haplotypes for the associated genomic regions in frequency in 831 wheat accessions that are either introduced from other countries or developed in China from last two decades. We identify 83 loci that are associated with one trait, while the remaining 247 loci are pleiotropic. We also find 163 associated loci are under strong selective sweep. GWAS results demonstrate independent regulation of internode length of individual stems and consistent regulation of tiller length of individual plants. This makes it possible to obtain ideal haplotype combinations of the length of four internodes. We also find that the geographical distribution of the haplotypes explains the observed differences in internode length among the worldwide wheat accessions. CONCLUSION This study provides insights into the genetic basis of plant architecture. It will facilitate gene functional analysis and molecular design of plant architecture for breeding.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xiaowan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Kartseva T, Alqudah AM, Aleksandrov V, Alomari DZ, Doneva D, Arif MAR, Börner A, Misheva S. Nutritional Genomic Approach for Improving Grain Protein Content in Wheat. Foods 2023; 12:1399. [PMID: 37048220 PMCID: PMC10093644 DOI: 10.3390/foods12071399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Grain protein content (GPC) is a key aspect of grain quality, a major determinant of the flour functional properties and grain nutritional value of bread wheat. Exploiting diverse germplasms to identify genes for improving crop performance and grain nutritional quality is needed to enhance food security. Here, we evaluated GPC in a panel of 255 Triticum aestivum L. accessions from 27 countries. GPC determined in seeds from three consecutive crop seasons varied from 8.6 to 16.4% (11.3% on average). Significant natural phenotypic variation in GPC among genotypes and seasons was detected. The population was evaluated for the presence of the trait-linked single nucleotide polymorphism (SNP) markers via a genome-wide association study (GWAS). GWAS analysis conducted with calculated best linear unbiased estimates (BLUEs) of phenotypic data and 90 K SNP array using the fixed and random model circulating probability unification (FarmCPU) model identified seven significant genomic regions harboring GPC-associated markers on chromosomes 1D, 3A, 3B, 3D, 4B and 5A, of which those on 3A and 3B shared associated SNPs with at least one crop season. The verified SNP-GPC associations provide new promising genomic signals on 3A (SNPs: Excalibur_c13709_2568 and wsnp_Ku_c7811_13387117) and 3B (SNP: BS00062734_51) underlying protein improvement in wheat. Based on the linkage disequilibrium for significant SNPs, the most relevant candidate genes within a 4 Mbp-window included genes encoding a subtilisin-like serine protease; amino acid transporters; transcription factors; proteins with post-translational regulatory functions; metabolic proteins involved in the starch, cellulose and fatty acid biosynthesis; protective and structural proteins, and proteins associated with metal ions transport or homeostasis. The availability of molecular markers within or adjacent to the sequences of the detected candidate genes might assist a breeding strategy based on functional markers to improve genetic gains for GPC and nutritional quality in wheat.
Collapse
Affiliation(s)
- Tania Kartseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Vladimir Aleksandrov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| | - Dalia Z. Alomari
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| | - Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan;
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plants Research (IPK Gatersleben), Corrensstraße 3, OT Gatersleben, 06466 Seeland, Germany;
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| |
Collapse
|
9
|
Klymiuk V, Haile T, Ens J, Wiebe K, N’Diaye A, Fatiukha A, Krugman T, Ben-David R, Hübner S, Cloutier S, Pozniak CJ. Genetic architecture of rust resistance in a wheat ( Triticum turgidum) diversity panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1145371. [PMID: 36998679 PMCID: PMC10043469 DOI: 10.3389/fpls.2023.1145371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Introduction Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teketel Haile
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N’Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrii Fatiukha
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Roi Ben-David
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO) – The Volcani Center, Rishon LeZion, Israel
| | - Sariel Hübner
- Galilee Research Institute (MIGAL), Tel Hai Academic College, Upper Galilee, Israel
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Genome-Wide Association Studies of Salt Tolerance at the Seed Germination Stage and Yield-Related Traits in Brassica napus L. Int J Mol Sci 2022; 23:ijms232415892. [PMID: 36555533 PMCID: PMC9785822 DOI: 10.3390/ijms232415892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Salt stress severely affects crop growth and development and reduces the yield of Brassica napus. Exploring natural genetic variations for high salt tolerance in B. napus seedlings is an effective approach to improve productivity under salt stress. Using 10,658 high-quality single nucleotide polymorphic (SNP) markers developed by specific-locus amplified fragment sequencing (SLAF-seq) technology, genome-wide association studies (GWAS) were performed to investigate the genetic basis of salt tolerance and yield-related traits of B. napus. The results revealed that 77 and 497 SNPs were significantly associated with salt tolerance and yield-related traits, of which 40 and 58 SNPs were located in previously reported QTLs/SNPs, respectively. We identified nineteen candidate genes orthologous with Arabidopsis genes known to be associated with salt tolerance and seven potential candidates controlling both salt tolerance and yield. Our study provides a novel genetic resource for the breeding of high-yield cultivars resistant to salt stress.
Collapse
|