1
|
Zhao H, Xiao Q, An Y, Wang M, Zhong J. Phospholipid metabolism and drug resistance in cancer. Life Sci 2025; 372:123626. [PMID: 40210119 DOI: 10.1016/j.lfs.2025.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Phospholipids, complex lipids prevalent in the human body, play crucial roles in various pathophysiological processes. Beyond their synthesis and degradation, phospholipids can influence chemoresistance by participating in ferroptosis. Extensive evidence highlights the significant link between tumor drug resistance and phospholipids. Therefore, drugs targeting phospholipid metabolism itself or the synthesis of corresponding composite materials will effectively overcome the difficulties of clinical tumor treatment.
Collapse
Affiliation(s)
- Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yangfang An
- Yiyang Central Hospital, Yiyang, Hunan 413099, PR China
| | - Mu Wang
- Clinical Mass Spectrometry Laboratory, Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
2
|
Mu H, Hu J, Lin Z, Wei L, Li Q, Wang X, Geng P, Zhong R, Cui S, Liu W, Hu C, Xu G, Tan G. Integration of network pharmacology, metabolomics and lipidomics for clarifying the role of sphingolipid metabolism in the treatment of liver cancer by regorafenib. Life Sci 2024; 358:123165. [PMID: 39447728 DOI: 10.1016/j.lfs.2024.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
AIMS Regorafenib, an FDA-approved drug for advanced primary liver cancer (PLC), could provide survival benefits for patients. However, markers for its therapeutic sensitivity are lacking. This study seeks to identify sensitive targets of regorafenib in PLC from the perspective of small molecular metabolites. MATERIALS AND METHODS Initiated with network pharmacology (NP) to map regorafenib's target landscape and metabolic regulatory network in liver cancer. Subsequently, regorafenib's impact on hepatoma cells was evaluated by flow cytometry, western blotting (WB) and cell viability assay. Advanced metabolomics and lipidomics were employed to elucidate regorafenib's metabolic reprogramming effects in liver cancer. Metabolic enzyme expression was assessed by WB, immunohistochemical and immunofluorescence assays. Ultimately, mendelian randomization (MR) analysis was utilized to investigate the potential causality of sphingolipid metabolism in hepatic cancer. KEY FINDINGS Regorafenib was observed to inhibit hepatoma cell proliferation and cell cycle progression at G0/G1 phase, resulting in significant alterations in sphingolipid levels. It promoted the significant accumulation of 16:0 dihydroceramide (16:0 dhCer) by upregulating ceramide synthase 6 (CERS6) expression and inhibiting dihydroceramide desaturase 1 (DEGS1) activity. The MR analysis revealed that DEGS1 was a risk factor for the development and progression of liver cancer, while cumulative 16:0 dhCer was a protective factor. SIGNIFICANCE Sphingolipids, particularly dhCer and regulatory enzymes, may be potential sensitive markers of regorafenib in the treatment of liver cancer, providing new insights for enhancing the treated efficacy of regorafenib in liver cancer.
Collapse
Affiliation(s)
- Hua Mu
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Hepatobiliary and Pancreatic diseases, Dalian 116011, China
| | - Jinlong Hu
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Hepatobiliary and Pancreatic diseases, Dalian 116011, China
| | - Zhikun Lin
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Hepatobiliary and Pancreatic diseases, Dalian 116011, China
| | - Letian Wei
- Department of Urinary surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pengyu Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rui Zhong
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Hepatobiliary and Pancreatic diseases, Dalian 116011, China
| | - Shimeng Cui
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Hepatobiliary and Pancreatic diseases, Dalian 116011, China
| | - Wenru Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guang Tan
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116011, China; Dalian Key Laboratory of Prevention and Treatment of Hepatobiliary and Pancreatic diseases, Dalian 116011, China.
| |
Collapse
|
3
|
Kim S, Yeop Baek S, Cha C. Bioactive Microgels with Tunable Microenvironment as a 3D Platform to Guide the Complex Physiology of Hepatocellular Carcinoma Spheroids. Chembiochem 2024:e202400482. [PMID: 39226234 DOI: 10.1002/cbic.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it often disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure. In this study, hepatocellular carcinoma (HCC) cells are encapsulated in bioactive microgels consisting of gelatin and hyaluronic acid designed to emulate tumor microenvironment in order to induce hepatic tumor spheroid formation. Two different subtypes of HCC's, HepG2 and Hep3B cell lines, are explored. The physicomechanical and biochemical properties of the microgels, controlled by changing the crosslinking density and polymer composition, are clearly shown to have substantial influence over the formation and spheroid formation. Moreover, the spheroids made from different cells and microgel properties display highly variable chemoresistance effects, further highlighting the importance of microenvironmental factors guiding tumor spheroid physiology.
Collapse
Affiliation(s)
- Suntae Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung Yeop Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Valente LC, Bacil GP, Riechelmann-Casarin L, Barbosa GC, Barbisan LF, Romualdo GR. Exploring in vitro modeling in hepatocarcinogenesis research: morphological and molecular features and similarities to the corresponding human disease. Life Sci 2024; 351:122781. [PMID: 38848937 DOI: 10.1016/j.lfs.2024.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The hepatocellular carcinoma (HCC) features a remarkable epidemiological burden, ranking as the third most lethal cancer worldwide. As the HCC-related molecular and cellular complexity unfolds as the disease progresses, the use of a myriad of in vitro models available is mandatory in translational preclinical research setups. In this review paper, we will compile cutting-edge information on the in vitro bioassays for HCC research, (A) emphasizing their morphological and molecular parallels with human HCC; (B) delineating the advantages and limitations of their application; and (C) offering perspectives on their prospective applications. While bidimensional (2D) (co) culture setups provide a rapid low-cost strategy for metabolism and drug screening investigations, tridimensional (3D) (co) culture bioassays - including patient-derived protocols as organoids and precision cut slices - surpass some of the 2D strategies limitations, mimicking the complex microarchitecture and cellular and non-cellular microenvironment observed in human HCC. 3D models have become invaluable tools to unveil HCC pathophysiology and targeted therapy. In both setups, the recapitulation of HCC in different etiologies/backgrounds (i.e., viral, fibrosis, and fatty liver) may be considered as a fundamental guide for obtaining translational findings. Therefore, a "multimodel" approach - encompassing the advantages of different in vitro bioassays - is encouraged to circumvent "model-biased" outcomes in preclinical HCC research.
Collapse
Affiliation(s)
- Leticia Cardoso Valente
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Luana Riechelmann-Casarin
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | | | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil.
| |
Collapse
|
5
|
Zhang F, Wu J, Zhang L, Zhang J, Yang R. Alterations in serum metabolic profiles of early-stage hepatocellular carcinoma patients after radiofrequency ablation therapy. J Pharm Biomed Anal 2024; 243:116073. [PMID: 38484637 DOI: 10.1016/j.jpba.2024.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To investigate the alterations in serum metabolic profiles and early-stage hepatocellular carcinoma (HCC) patient characteristics after radiofrequency ablation (RFA) therapy. This evaluation aimed to assess treatment effectiveness and identify potential novel approaches and targets for HCC treatment and prognosis monitoring. METHODS Untargeted metabolomics technology was employed to analyze serum metabolic profiles in healthy volunteer controls (NCs) and early stage HCC patients before and after RFA therapy. Additionally, Human Metabolome Database and Kyoto Encyclopedia of Genes and Genomes database were used to identify the differential metabolites (DMs) and metabolic pathways. Cystoscape was utilized to construct DM gene networks. Amino acid analyses were performed to validate our findings. RESULTS We identified 11, 14, and six DMs between the NC and HCC groups, HCC patients before and after RFA therapy, and post-RFA HCC and NC groups, respectively. The expression levels of these DMs, particularly those of amino acids and lipids, significantly changed. Compared with the NC group, higher levels of L-tyrosine, aspartate, and 18-oxo-oleate were observed in HCC patients, which were significantly reduced in patients after RFA therapy. Meanwhile, HCC patients after RFA therapy had increased levels of L-arginine, phosphatidic acid (20:3), and lysophosphatidyl choline (LPC) (20:4) compared to those before therapy, while their levels before therapy were lower than those of NC. Moreover, most metabolites in the post-RFA and NC groups showed no significant changes in expression, except for L-tyrosine and LPC (16:0). These metabolites could potentially serve as characteristic factors of early-stage HCC patients after RFA therapy. Joint pathway analysis revealed striking changes, mainly in phenylalanine, tyrosine, and tryptophan biosynthesis; alanine, aspartate, and glutamate metabolism; and arginine and aminoacyl-tRNA biosynthesis. Bioinformatics analysis of publicly available data preliminarily identified 187 DM-related metabolic enzymes. CONCLUSION Our study proposed novel targets for early-stage HCC treatment, laying the groundwork for improving treatment efficacy and prognosis of early-stage HCC patients.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Jing Wu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China.
| | - Lei Zhang
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Jian Zhang
- The Second Hospital of Tianjin Medical University, Tianjin 300000, China
| | - Rui Yang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300000, China.
| |
Collapse
|
6
|
Shrestha S, Lekkala VKR, Acharya P, Kang SY, Vanga MG, Lee MY. Reproducible generation of human liver organoids (HLOs) on a pillar plate platform via microarray 3D bioprinting. LAB ON A CHIP 2024; 24:2747-2761. [PMID: 38660778 PMCID: PMC11605706 DOI: 10.1039/d4lc00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Human liver organoids (HLOs) hold significant potential for recapitulating the architecture and function of liver tissues in vivo. However, conventional culture methods of HLOs, forming Matrigel domes in 6-/24-well plates, have technical limitations such as high cost and low throughput in organoid-based assays for predictive assessment of compounds in clinical and pharmacological lab settings. To address these issues, we have developed a unique microarray 3D bioprinting protocol of progenitor cells in biomimetic hydrogels on a pillar plate with sidewalls and slits, coupled with a clear bottom, 384-deep well plate for scale-up production of HLOs. Microarray 3D bioprinting, a droplet-based printing technology, was used to generate a large number of small organoids on the pillar plate for predictive hepatotoxicity assays. Foregut cells, differentiated from human iPSCs, were mixed with Matrigel and then printed on the pillar plate rapidly and uniformly, resulting in coefficient of variation (CV) values in the range of 15-18%, without any detrimental effect on cell viability. Despite utilizing 10-50-fold smaller cell culture volume compared to their counterparts in Matrigel domes in 6-/24-well plates, HLOs differentiated on the pillar plate exhibited similar morphology and superior function, potentially due to rapid diffusion of nutrients and oxygen at the small scale. Day 25 HLOs were robust and functional on the pillar plate in terms of their viability, albumin secretion, CYP3A4 activity, and drug toxicity testing, all with low CV values. From three independent trials of in situ assessment, the IC50 values calculated for sorafenib and tamoxifen were 6.2 ± 1.6 μM and 25.4 ± 8.3 μM, respectively. Therefore, our unique 3D bioprinting and miniature organoid culture on the pillar plate could be used for scale-up, reproducible generation of HLOs with minimal manual intervention for high-throughput assessment of compound hepatotoxicity.
Collapse
Affiliation(s)
- Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA.
| | | | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA.
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA.
| | - Manav Goud Vanga
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA.
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA.
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| |
Collapse
|
7
|
Al-Daffaie FM, Al-Mudhafar SF, Alhomsi A, Tarazi H, Almehdi AM, El-Huneidi W, Abu-Gharbieh E, Bustanji Y, Alqudah MAY, Abuhelwa AY, Guella A, Alzoubi KH, Semreen MH. Metabolomics and Proteomics in Prostate Cancer Research: Overview, Analytical Techniques, Data Analysis, and Recent Clinical Applications. Int J Mol Sci 2024; 25:5071. [PMID: 38791108 PMCID: PMC11120916 DOI: 10.3390/ijms25105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer (PCa) is a significant global contributor to mortality, predominantly affecting males aged 65 and above. The field of omics has recently gained traction due to its capacity to provide profound insights into the biochemical mechanisms underlying conditions like prostate cancer. This involves the identification and quantification of low-molecular-weight metabolites and proteins acting as crucial biochemical signals for early detection, therapy assessment, and target identification. A spectrum of analytical methods is employed to discern and measure these molecules, revealing their altered biological pathways within diseased contexts. Metabolomics and proteomics generate refined data subjected to detailed statistical analysis through sophisticated software, yielding substantive insights. This review aims to underscore the major contributions of multi-omics to PCa research, covering its core principles, its role in tumor biology characterization, biomarker discovery, prognostic studies, various analytical technologies such as mass spectrometry and Nuclear Magnetic Resonance, data processing, and recent clinical applications made possible by an integrative "omics" approach. This approach seeks to address the challenges associated with current PCa treatments. Hence, our research endeavors to demonstrate the valuable applications of these potent tools in investigations, offering significant potential for understanding the complex biochemical environment of prostate cancer and advancing tailored therapeutic approaches for further development.
Collapse
Affiliation(s)
- Fatima M. Al-Daffaie
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| | - Sara F. Al-Mudhafar
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
| | - Aya Alhomsi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
| | - Hamadeh Tarazi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| | - Ahmed M. Almehdi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad A. Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Adnane Guella
- Nephrology Department, University Hospital Sharjah, Sharjah 27272, United Arab Emirates;
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.M.A.-D.); (S.F.A.-M.); (A.A.); (H.T.); (A.M.A.)
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (W.E.-H.); (E.A.-G.); (A.Y.A.); (K.H.A.)
| |
Collapse
|
8
|
Dakilah I, Harb A, Abu-Gharbieh E, El-Huneidi W, Taneera J, Hamoudi R, Semreen MH, Bustanji Y. Potential of CDC25 phosphatases in cancer research and treatment: key to precision medicine. Front Pharmacol 2024; 15:1324001. [PMID: 38313315 PMCID: PMC10834672 DOI: 10.3389/fphar.2024.1324001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
The global burden of cancer continues to rise, underscoring the urgency of developing more effective and precisely targeted therapies. This comprehensive review explores the confluence of precision medicine and CDC25 phosphatases in the context of cancer research. Precision medicine, alternatively referred to as customized medicine, aims to customize medical interventions by taking into account the genetic, genomic, and epigenetic characteristics of individual patients. The identification of particular genetic and molecular drivers driving cancer helps both diagnostic accuracy and treatment selection. Precision medicine utilizes sophisticated technology such as genome sequencing and bioinformatics to elucidate genetic differences that underlie the proliferation of cancer cells, hence facilitating the development of customized therapeutic interventions. CDC25 phosphatases, which play a crucial role in governing the progression of the cell cycle, have garnered significant attention as potential targets for cancer treatment. The dysregulation of CDC25 is a characteristic feature observed in various types of malignancies, hence classifying them as proto-oncogenes. The proteins in question, which operate as phosphatases, play a role in the activation of Cyclin-dependent kinases (CDKs), so promoting the advancement of the cell cycle. CDC25 inhibitors demonstrate potential as therapeutic drugs for cancer treatment by specifically blocking the activity of CDKs and modulating the cell cycle in malignant cells. In brief, precision medicine presents a potentially fruitful option for augmenting cancer research, diagnosis, and treatment, with an emphasis on individualized care predicated upon patients' genetic and molecular profiles. The review highlights the significance of CDC25 phosphatases in the advancement of cancer and identifies them as promising candidates for therapeutic intervention. This statement underscores the significance of doing thorough molecular profiling in order to uncover the complex molecular characteristics of cancer cells.
Collapse
Affiliation(s)
- Ibraheem Dakilah
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Amani Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammed H Semreen
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Abusaliya A, Jeong SH, Bhosale PB, Kim HH, Park MY, Kim E, Won CK, Park KI, Heo JD, Kim HW, Ahn M, Seong JK, Kim GS. Mechanistic Action of Cell Cycle Arrest and Intrinsic Apoptosis via Inhibiting Akt/mTOR and Activation of p38-MAPK Signaling Pathways in Hep3B Liver Cancer Cells by Prunetrin-A Flavonoid with Therapeutic Potential. Nutrients 2023; 15:3407. [PMID: 37571343 PMCID: PMC10420889 DOI: 10.3390/nu15153407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis and a low survival rate. Drugs without side effects are desperately needed since chemotherapy has a negative effect on the host cells. Previous research has firmly established that plant-based compounds have significant bioactivities without a negative impact on the host. Flavonoids, in particular, are a class of compounds with both anti-inflammatory and anti-cancer properties. Prunetrin (PUR) is a glycosyloxyisoflavone (Prunetin 4'-O-glucoside) derived from Prunus sp., and its other form, called prunetin, showed optimistic results in an anti-cancerous study. Hence, we aimed to discover the anti-cancer ability of prunetrin in liver cancer Hep3B cells. Our cytotoxicity results showed that PUR can decrease cell viability. The colony formation assay confirms this strongly and correlates with cell cytotoxicity results. Prunetrin, in a dose-dependent manner, arrested the cell cycle in the G2/M phase and decreased the expression of cyclin proteins such as Cyclin B1, CDK1/CDC2, and CDC25c. Prunetrin treatment also promoted the strong cleavage of two important apoptotic hallmark proteins called PARP and caspase-3. It also confirms that apoptosis occurs through the mitochondrial pathway through increased expression of cleaved caspase-9 and increased levels of the pro-apoptotic protein Bak. Bak was significantly increased with the declining expression of the anti-apoptotic protein Bcl-xL. Next, it inhibits the mTOR/AKT signaling pathways, proving that prunetrin includes apoptosis and decreases cell viability by suppressing these pathways. Further, it was also observed that the activation of p38-MAPK was dose-dependent. Taken together, they provide evidence that prunetrin has an anti-cancerous ability in Hep3B liver cancer cells by arresting the cell cycle via p38 and inhibiting mTOR/AKT.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Eunhye Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Chung Kil Won
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Kwang Il Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| |
Collapse
|
10
|
Feng XC, Liu FC, Chen WY, Du J, Liu H. Lipid metabolism of hepatocellular carcinoma impacts targeted therapy and immunotherapy. World J Gastrointest Oncol 2023; 15:617-631. [PMID: 37123054 PMCID: PMC10134209 DOI: 10.4251/wjgo.v15.i4.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that affecting many people's lives globally. The common risk factors for HCC include being overweight and obese. The liver is the center of lipid metabolism, synthesizing most cholesterol and fatty acids. Abnormal lipid metabolism is a significant feature of metabolic reprogramming in HCC and affects the prognosis of HCC patients by regulating inflammatory responses and changing the immune microenvironment. Targeted therapy and immunotherapy are being explored as the primary treatment strategies for HCC patients with unresectable tumors. Here, we detail the specific changes of lipid metabolism in HCC and its impact on both these therapies for HCC. HCC treatment strategies aimed at targeting lipid metabolism and how to integrate them with targeted therapy or immunotherapy rationally are also presented.
Collapse
Affiliation(s)
- Xiao-Chen Feng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Wu-Yu Chen
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Jin Du
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| |
Collapse
|
11
|
Wu X, Wang Z, Luo L, Shu D, Wang K. Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision medicine. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1065506. [PMID: 36688143 PMCID: PMC9845953 DOI: 10.3389/fmedt.2022.1065506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health burden, and is mostly diagnosed at late and advanced stages. Currently, limited and insensitive diagnostic modalities continue to be the bottleneck of effective and tailored therapy for HCC patients. Moreover, the complex reprogramming of metabolic patterns during HCC initiation and progression has been obstructing the precision medicine in clinical practice. As a noninvasive and global screening approach, metabolomics serves as a powerful tool to dynamically monitor metabolic patterns and identify promising metabolite biomarkers, therefore holds a great potential for the development of tailored therapy for HCC patients. In this review, we summarize the recent advances in HCC metabolomics studies, including metabolic alterations associated with HCC progression, as well as novel metabolite biomarkers for HCC diagnosis, monitor, and prognostic evaluation. Moreover, we highlight the application of multi-omics strategies containing metabolomics in biomarker discovery for HCC. Notably, we also discuss the opportunities and challenges of metabolomics in nowadays HCC precision medicine. As technologies improving and metabolite biomarkers discovering, metabolomics has made a major step toward more timely and effective precision medicine for HCC patients.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dan Shu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China,Correspondence: Kui Wang Dan Shu
| | - Kui Wang
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China,Correspondence: Kui Wang Dan Shu
| |
Collapse
|