1
|
Kraft A, Kirschner MB, Orlowski V, Ronner M, Bodmer C, Boeva V, Opitz I, Meerang M. Exploring RNA cargo in extracellular vesicles for pleural mesothelioma detection. BMC Cancer 2025; 25:212. [PMID: 39920655 PMCID: PMC11804012 DOI: 10.1186/s12885-025-13617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Pleural Mesothelioma (PM) is a highly aggressive cancer, for which effective early detection remains a challenge due to limited screening options and low sensitivity of biomarkers discovered so far. While extracellular vesicles (EVs) have emerged as promising candidates for blood-based biomarkers, their role in PM has not been studied yet. In this study, we characterized the transcriptomic profile of EVs secreted by PM primary cells and explored their potential as a biomarker source for PM detection. METHODS We collected cell culture supernatant from early-passage PM cell cultures derived from the pleural effusion of 4 PM patients. EVs were isolated from the supernatant using Qiagen exoEasy Maxi kit. RNA isolation from EVs was done using the mirVana PARIS kit. Finally, single-end RNA sequencing was done with Illumina Novaseq 6000. RESULTS We identified a range of RNA species expressed in EVs secreted by PM cells, including protein-coding RNA (80%), long non-coding RNA (13%), pseudogenes (4.5%), and short non-coding RNA (1.6%). We detected a subset of genes associated with the previously identified epithelioid (32 genes) and sarcomatoid molecular components (36 genes) in PM-EVs. To investigate whether these markers could serve as biomarkers for PM detection in blood, we compared the RNA content of PM-EVs with the cargo of EVs isolated from the plasma of healthy donors (publicly available data). Majority of upregulated genes in PM-EVs were protein-coding and long non-coding RNAs. Interestingly, 25 of them were the sarcomatoid and epithelioid marker genes. Finally, functional analysis revealed that the PM-EV RNA cargo was associated with Epithelial-Mesenchymal transition, glycolysis, and hypoxia. CONCLUSIONS This is the first study to characterize the transcriptomic profile of EVs secreted by PM primary cell cultures, demonstrating their potential as biomarker source for early detection. Further investigation of the functional role of PM-EVs will provide new insights into disease biology and therapeutic avenues.
Collapse
Affiliation(s)
- Agnieszka Kraft
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Michaela B Kirschner
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Vanessa Orlowski
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Manuel Ronner
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Caroline Bodmer
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Valentina Boeva
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
- UMR 8104, UMR-S1016, Cochin InstituteCNRSParis Descartes University, Inserm U1016, 75014, Paris, France
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mayura Meerang
- Department of Thoracic Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
WILCZAK MAGDALENA, SURMAN MAGDALENA, PRZYBYłO MA. Melanoma-derived extracellular vesicles transfer proangiogenic factors. Oncol Res 2025; 33:245-262. [PMID: 39866233 PMCID: PMC11753996 DOI: 10.32604/or.2024.055449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 01/28/2025] Open
Abstract
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase. This balance is disrupted in tumors, and extracellular vesicles (EVs) contribute to this by transferring proangiogenic factors and increasing their expression in endothelial cells (ECs). Malignant melanoma, a particular type of skin cancer, accounts for only 1% of skin cancer cases but more than 75% of deaths. Its incidence has risen significantly, with a 40% increase between 2012 and 2022, especially in fair-skinned populations. Advanced metastatic stages have a high mortality due to delayed diagnosis. This review examines the molecular basis of angiogenesis in melanoma, focusing on melanoma-derived EVs and their possible use in new antiangiogenic therapies.
Collapse
Affiliation(s)
- MAGDALENA WILCZAK
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - MAGDALENA SURMAN
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland
| | - MAłGORZATA PRZYBYłO
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland
| |
Collapse
|
3
|
Dhamdhere MR, Spiegelman VS. Extracellular vesicles in neuroblastoma: role in progression, resistance to therapy and diagnostics. Front Immunol 2024; 15:1385875. [PMID: 38660306 PMCID: PMC11041043 DOI: 10.3389/fimmu.2024.1385875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.
Collapse
Affiliation(s)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
4
|
Lv T, Liu H, Mao L, Song Y, Liao L, Zhong K, Shuai B, Luo Y, Guo T, Huang W, Zhang S. Cancer-associated fibroblast-derived extracellular vesicles promote lymph node metastases in oral cavity squamous cell carcinoma by encapsulating ITGB1 and BMI1. BMC Cancer 2024; 24:113. [PMID: 38254031 PMCID: PMC10804601 DOI: 10.1186/s12885-024-11855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) have been revealed to facilitate the development of oral squamous cavity cell carcinoma (OCSCC), while its supporting role in lymph node metastases is under continuous investigation. This study aimed to examine the function of cancer-associated fibroblasts (CAF)-derived EVs (CAF-EVs) during lymph node metastasis in OCSCC and the mechanisms. METHODS CAF were isolated from OCSCC tissues of patients, and CAF-EVs were extracted and identified. EdU, colony formation, wound healing, and Transwell assays were performed. The OCSCC cells before and after CAF-EVs treatment were injected into mice to probe the effects of CAF-EVs on tumor growth and lymph node metastasis, respectively. The effect of CAF-EVs treatment on transcriptome changes in OCSCC cells was analyzed. Clinical data of patients with OCSCC were analyzed to determine the prognostic significance of the selected genes. Finally, loss-of-function assays were conducted to corroborate the involvement of polycomb complex protein BMI-1 (BMI1) and integrin beta1 (ITGB1). RESULTS CAF-EVs promoted the malignant behavior of OCSCC cells and accelerated tumor growth and lymph node metastasis in mice. CAF-EVs significantly increased the expression of BMI1 and ITGB1, and the expression of BMI1 and ITGB1 was negatively correlated with the overall survival and relapse-free survival of OCSCC patients. Knockdown of BMI1 or ITGB1 in OCSCC cells abated the promoting effects of CAF-EVs in vitro and in vivo. CONCLUSION CAF-EVs elicited the metastasis-promoting properties in OCSCC by elevating BMI1 and ITGB1, suggesting that BMI1 and ITGB1 could be potential biomarkers and therapeutic targets for OCSCC.
Collapse
Affiliation(s)
- Tianzhu Lv
- Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Hongjing Liu
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Ling Mao
- Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Yanrong Song
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Lili Liao
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Kun Zhong
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Binbin Shuai
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Yingkun Luo
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Tingting Guo
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Wentao Huang
- School of Savaid Stomatology, Hangzhou Medical College, 311399, Hangzhou, Zhejiang, P.R. China.
| | - Shenyingjie Zhang
- Medical Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
5
|
Chrisochoidou Y, Roy R, Farahmand P, Gonzalez G, Doig J, Krasny L, Rimmer EF, Willis AE, MacFarlane M, Huang PH, Carragher NO, Munro AF, Murphy DJ, Veselkov K, Seckl MJ, Moffatt MF, Cookson WOC, Pardo OE. Crosstalk with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells. Cell Death Dis 2023; 14:725. [PMID: 37938546 PMCID: PMC10632403 DOI: 10.1038/s41419-023-06240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Mesothelioma is an aggressive cancer of the mesothelial layer associated with an extensive fibrotic response. The latter is in large part mediated by cancer-associated fibroblasts which mediate tumour progression and poor prognosis. However, understanding of the crosstalk between cancer cells and fibroblasts in this disease is mostly lacking. Here, using co-cultures of patient-derived mesothelioma cell lines and lung fibroblasts, we demonstrate that fibroblast activation is a self-propagated process producing a fibrotic extracellular matrix (ECM) and triggering drug resistance in mesothelioma cells. Following characterisation of mesothelioma cells/fibroblasts signalling crosstalk, we identify several FDA-approved targeted therapies as far more potent than standard-of-care Cisplatin/Pemetrexed in ECM-embedded co-culture spheroid models. In particular, the SRC family kinase inhibitor, Saracatinib, extends overall survival well beyond standard-of-care in a mesothelioma genetically-engineered mouse model. In short, we lay the foundation for the rational design of novel therapeutic strategies targeting mesothelioma/fibroblast communication for the treatment of mesothelioma patients.
Collapse
Affiliation(s)
| | - Rajat Roy
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Guadalupe Gonzalez
- Department of Computing, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jennifer Doig
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lukas Krasny
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ella F Rimmer
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Anne E Willis
- MRC Toxicology Unit, Tennis Ct Rd, Cambridge, CB2 1QR, UK
| | | | - Paul H Huang
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Neil O Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alison F Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Daniel J Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kirill Veselkov
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Michael J Seckl
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK
| | - William O C Cookson
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK.
| | - Olivier E Pardo
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
6
|
Ries A, Slany A, Pirker C, Mader JC, Mejri D, Mohr T, Schelch K, Flehberger D, Maach N, Hashim M, Hoda MA, Dome B, Krupitza G, Berger W, Gerner C, Holzmann K, Grusch M. Primary and hTERT-Transduced Mesothelioma-Associated Fibroblasts but Not Primary or hTERT-Transduced Mesothelial Cells Stimulate Growth of Human Mesothelioma Cells. Cells 2023; 12:2006. [PMID: 37566084 PMCID: PMC10417280 DOI: 10.3390/cells12152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.
Collapse
Affiliation(s)
- Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Johanna C. Mader
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Doris Mejri
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Waehringer Guertel 38, 1090 Vienna, Austria
- ScienceConsult—DI Thomas Mohr KG, Enzianweg 10a, 2353 Guntramsdorf, Austria
| | - Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Daniela Flehberger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Nadine Maach
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Muhammad Hashim
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
- National Korányi Institute of Pulmonology, Korányi Frigyes u. 1, 1122 Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Rath Gyorgy u. 7-9, 1122 Budapest, Hungary
- Department of Translational Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| |
Collapse
|
7
|
The Genes-Stemness-Secretome Interplay in Malignant Pleural Mesothelioma: Molecular Dynamics and Clinical Hints. Int J Mol Sci 2023; 24:ijms24043496. [PMID: 36834912 PMCID: PMC9963101 DOI: 10.3390/ijms24043496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.
Collapse
|