1
|
Li S, Zhou X, Duan Q, Niu S, Li P, Feng Y, Zhang Y, Xu X, Gong SP, Cao H. Autophagy and Its Association with Macrophages in Clonal Hematopoiesis Leading to Atherosclerosis. Int J Mol Sci 2025; 26:3252. [PMID: 40244103 PMCID: PMC11989900 DOI: 10.3390/ijms26073252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by lipid accumulation and immune cell infiltration, is linked to plaque formation and cardiovascular events. While traditionally associated with lipid metabolism and endothelial dysfunction, recent research highlights the roles of autophagy and clonal hematopoiesis (CH) in its pathogenesis. Autophagy, a cellular process crucial for degrading damaged components, regulates macrophage homeostasis and inflammation, both of which are pivotal in atherosclerosis. In macrophages, autophagy influences lipid metabolism, cytokine regulation, and oxidative stress, helping to prevent plaque instability. Defective autophagy exacerbates inflammation, impairs cholesterol efflux, and accelerates disease progression. Additionally, autophagic processes in endothelial cells and smooth muscle cells further contribute to atherosclerotic pathology. Recent studies also emphasize the interplay between autophagy and CH, wherein somatic mutations in genes like TET2, JAK2, and DNMT3A drive immune cell expansion and enhance inflammatory responses in atherosclerotic plaques. These mutations modify macrophage function, intensifying the inflammatory environment and accelerating atherosclerosis. Chaperone-mediated autophagy (CMA), a selective form of autophagy, also plays a critical role in regulating macrophage inflammation by degrading pro-inflammatory cytokines and oxidized low-density lipoprotein (ox-LDL). Impaired CMA activity leads to the accumulation of these substrates, activating the NLRP3 inflammasome and worsening inflammation. Preclinical studies suggest that pharmacologically activating CMA may mitigate atherosclerosis progression. In animal models, reduced CMA activity accelerates plaque instability and increases inflammation. This review highlights the importance of autophagic regulation in macrophages, focusing on its role in inflammation, plaque formation, and the contributions of CH. Building upon current advances, we propose a hypothesis in which autophagy, programmed cell death, and clonal hematopoiesis form a critical intrinsic axis that modulates the fundamental functions of macrophages, playing a complex role in the development of atherosclerosis. Understanding these mechanisms offers potential therapeutic strategies targeting autophagy and inflammation to reduce the burden of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shuanhu Li
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shukun Niu
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Pengquan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Yihan Feng
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Ye Zhang
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shou-Ping Gong
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Huiling Cao
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| |
Collapse
|
2
|
Song Y, Zhang Y, Wang X, Han X, Shi M, Xu L, Yu J, Zhang L, Han S. SPI1 activates TGF-β1/PI3K/Akt signaling through transcriptional upregulation of FKBP12 to support the mesenchymal phenotype of glioma stem cells. Brain Pathol 2024; 34:e13217. [PMID: 37865975 PMCID: PMC11007049 DOI: 10.1111/bpa.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Glioma stem cells (GSCs) exhibit diverse molecular subtypes with the mesenchymal (MES) population representing the most malignant variant. The oncogenic potential of Salmonella pathogenicity island 1 (SPI1), an oncogenic transcription factor, has been established across various human malignancies. In this study, we explored the association between the SPI1 pathway and the MES GSC phenotype. Through comprehensive analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas glioma databases, along with patient-derived GSC cultures, we analyzed SPI1 expression. Using genetic knockdown and overexpression techniques, we assessed the functional impact of SPI1 on GSC MES marker expression, invasion, proliferation, self-renewal, and sensitivity to radiation in vitro, as well as its influence on tumor formation in vivo. Additionally, we investigated the downstream signaling cascades activated by SPI1. Our findings revealed a positive correlation between elevated SPI1 expression and the MES phenotype, which in turn, correlated with poor survival. SPI1 enhanced GSC MES differentiation, self-renewal, and radioresistance in vitro, promoting tumorigenicity in vivo. Mechanistically, SPI1 augmented the transcriptional activity of both TGF-β1 and FKBP12 while activating the non-canonical PI3K/Akt pathway. Notably, inhibition of TGF-β1/PI3K/Akt signaling partially attenuated SPI1-induced GSC MES differentiation and its associated malignant phenotype. Collectively, our results underscore SPI1's role in activating TGF-β1/PI3K/Akt signaling through transcriptional upregulation of FKBP12, thereby supporting the aggressive MES phenotype of GSCs. Therefore, SPI1 emerges as a potential therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Yifu Song
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yaochuan Zhang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaoliang Wang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Xiaodi Han
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Mengwu Shi
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Ling Xu
- Department of Medical Oncologythe First Hospital of China Medical UniversityShenyangChina
| | - Juanhan Yu
- Department of PathologyChina Medical UniversityShenyangChina
| | - Li Zhang
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Sheng Han
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
3
|
Watcharanurak P, Mutirangura A, Aksornkitti V, Bhummaphan N, Puttipanyalears C. The high FKBP1A expression in WBCs as a potential screening biomarker for pancreatic cancer. Sci Rep 2024; 14:7888. [PMID: 38570626 PMCID: PMC10991374 DOI: 10.1038/s41598-024-58324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Given the limitation of current routine approaches for pancreatic cancer screening and detection, the mortality rate of pancreatic cancer cases is still critical. The development of blood-based molecular biomarkers for pancreatic cancer screening and early detection which provide less-invasive, high-sensitivity, and cost-effective, is urgently needed. The goal of this study is to identify and validate the potential molecular biomarkers in white blood cells (WBCs) of pancreatic cancer patients. Gene expression profiles of pancreatic cancer patients from NCBI GEO database were analyzed by CU-DREAM. Then, mRNA expression levels of three candidate genes were determined by quantitative RT-PCR in WBCs of pancreatic cancer patients (N = 27) and healthy controls (N = 51). ROC analysis was performed to assess the performance of each candidate gene. A total of 29 upregulated genes were identified and three selected genes were performed gene expression analysis. Our results revealed high mRNA expression levels in WBCs of pancreatic cancer patients in all selected genes, including FKBP1A (p < 0.0001), PLD1 (p < 0.0001), and PSMA4 (p = 0.0002). Among candidate genes, FKBP1A mRNA expression level was remarkably increased in the pancreatic cancer samples and also in the early stage (p < 0.0001). Moreover, FKBP1A showed the greatest performance to discriminate patients with pancreatic cancer from healthy individuals than other genes with the 88.9% sensitivity, 84.3% specificity, and 90.1% accuracy. Our findings demonstrated that the alteration of FKBP1A gene in WBCs serves as a novel valuable biomarker for patients with pancreatic cancer. Detection of FKBP1A mRNA expression level in circulating WBCs, providing high-sensitive, less-invasive, and cost-effective, is simple and feasible for routine clinical setting that can be applied for pancreatic cancer screening and early detection.
Collapse
Affiliation(s)
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vitavat Aksornkitti
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Narumol Bhummaphan
- College of Public Health Sciences, Chulalongkorn University, Sabbasastravicaya Building, Phayathai Road. Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| | - Charoenchai Puttipanyalears
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|