1
|
Xiang H, Bao C, Chen Q, Gao Q, Wang N, Gao Q, Mao L. Extracellular vesicles (EVs)' journey in recipient cells: from recognition to cargo release. J Zhejiang Univ Sci B 2024; 25:633-655. [PMID: 39155778 PMCID: PMC11337091 DOI: 10.1631/jzus.b2300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 08/20/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized bilayer vesicles that are shed or secreted by virtually every cell type. A variety of biomolecules, including proteins, lipids, coding and non-coding RNAs, and mitochondrial DNA, can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells, leading to alterations in the recipient cells, suggesting that EVs play an important role in intercellular communication. EVs play effective roles in physiology and pathology and could be used as diagnostic and therapeutic tools. At present, although the mechanisms of exosome biogenesis and secretion in donor cells are well understood, the molecular mechanism of EV recognition and uptake by recipient cells is still unclear. This review summarizes the current understanding of the molecular mechanisms of EVs' biological journey in recipient cells, from recognition to uptake and cargo release. Furthermore, we highlight how EVs escape endolysosomal degradation after uptake and thus release cargo, which is crucial for studies applying EVs as drug-targeted delivery vehicles. Knowledge of the cellular processes that govern EV uptake is important to shed light on the functions of EVs as well as on related clinical applications.
Collapse
Affiliation(s)
- Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Nan Wang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China.
| |
Collapse
|
2
|
Rao A, Subedi R, Kundu I, Idicula-Thomas S, Shinde U, Bansal V, Balsarkar G, Mayadeo N, Das DK, Balasinor N, Madan T. Differential proteomics of circulating extracellular vesicles of placental origin isolated from women with early-onset preeclampsia reveal aberrant innate immune and hemostasis processes. Am J Reprod Immunol 2024; 91:e13860. [PMID: 38804582 DOI: 10.1111/aji.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
PROBLEM Early-onset preeclampsia (EOPE) is a severe gestational hypertensive disorder with significant feto-maternal morbidity and mortality due to uteroplacental insufficiency. Circulating extracellular vesicles of placental origin (EV-P) are known to be involved in the pathophysiology of EOPE and might serve as an ideal reservoir for its specific biomarkers. Therefore, we aimed to characterize and perform comparative proteomics of circulating EV-P from healthy pregnant and EOPE women before delivery. METHOD OF STUDY The EV-P from both groups were isolated using immunoaffinity and were characterized using transmission electron microscopy, dynamic light scattering, nanoparticle tracking analysis, and immunoblotting. Following IgG albumin depletion, the pooled proteins that were isolated from EV-P of both groups were subjected to quantitative TMT proteomics. RESULTS Circulating term EV-P isolated from both groups revealed ∼150 nm spherical vesicles containing CD9 and CD63 along with placental PLAP and HLA-G proteins. Additionally, the concentration of EOPE-derived EV-P was significantly increased. A total of 208 proteins were identified, with 26 among them being differentially abundant in EV-P of EOPE women. This study linked the pathophysiology of EOPE to 19 known and seven novel proteins associated with innate immune responses such as complement and TLR signaling along with hemostasis and oxygen homeostasis. CONCLUSION The theory suggesting circulating EVs of placental origin could mimic molecular information from the parent organ-"the placenta"-is strengthened by this study. The findings pave the way for possible discovery of novel prognostic and predictive biomarkers as well as provide insight into the mechanisms driving the pathogenesis of EOPE.
Collapse
Affiliation(s)
- Aishwarya Rao
- Innate Immunity Department, ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai, India
| | - Rambhadur Subedi
- Innate Immunity Department, ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai, India
| | - Indra Kundu
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai, India
| | - Uma Shinde
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai, India
| | - Vandana Bansal
- Nowrosjee Wadia Maternity Hospital (NWMH), Mumbai, India
| | | | - Niranjan Mayadeo
- King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, India
| | - Dhanjit Kumar Das
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai, India
| | - Nafisa Balasinor
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), Mumbai, India
| | - Taruna Madan
- Development Research, Indian Council of Medical Research, V. Ramalingaswami Bhawan, New Delhi, India
| |
Collapse
|
3
|
Graf I, Urbschat C, Arck PC. The 'communicatome' of pregnancy: spotlight on cellular and extravesicular chimerism. EMBO Mol Med 2024; 16:700-714. [PMID: 38467841 PMCID: PMC11018796 DOI: 10.1038/s44321-024-00045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
Communication via biological mediators between mother and fetus are key to reproductive success and offspring's future health. The repertoire of mediators coding signals between mother and fetus is broad and includes soluble factors, membrane-bound particles and immune as well as non-immune cells. Based on the emergence of technological advancements over the last years, considerable progress has been made toward deciphering the "communicatome" between fetus and mother during pregnancy and even after birth. In this context, pregnancy-associated chimerism has sparked the attention among immunologists, since chimeric cells-although low in number-are maintained in the allogeneic host (mother or fetus) for years after birth. Other non-cellular structures of chimerism, e.g. extracellular vesicles (EVs), are increasingly recognized as modulators of pregnancy outcome and offspring's health. We here discuss the origin, distribution and function of pregnancy-acquired microchimerism and chimeric EVs in mother and offspring. We also highlight the pioneering concept of maternal microchimeric cell-derived EVs in offspring. Such insights expand the understanding of pregnancy-associated health or disease risks in mother and offspring.
Collapse
Affiliation(s)
- Isabel Graf
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Iannotta D, A A, Kijas AW, Rowan AE, Wolfram J. Entry and exit of extracellular vesicles to and from the blood circulation. NATURE NANOTECHNOLOGY 2024; 19:13-20. [PMID: 38110531 PMCID: PMC10872389 DOI: 10.1038/s41565-023-01522-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/17/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles that promote intercellular communication by delivering bioactive cargo over short and long distances. Short-distance communication takes place in the interstitium, whereas long-distance communication is thought to require transport through the blood circulation to reach distal sites. Extracellular vesicle therapeutics are frequently injected systemically, and diagnostic approaches often rely on the detection of organ-derived EVs in the blood. However, the mechanisms by which EVs enter and exit the circulation are poorly understood. Here, the lymphatic system and transport across the endothelial barrier through paracellular and transcellular routes are discussed as potential pathways for EV entry to and exit from the blood circulatory system.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
5
|
Lee ED, Mistry HD. Placental Related Disorders of Pregnancy 2.0. Int J Mol Sci 2023; 24:14286. [PMID: 37762593 PMCID: PMC10531803 DOI: 10.3390/ijms241814286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Following our first Special Issue, we are pleased to present this Special Issue in the International Journal of Molecular Sciences entitled 'Placental Related Disorders of Pregnancy 2 [...].
Collapse
Affiliation(s)
- Eun D. Lee
- Department of Microbiology and Immunology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London SE5 9NU, UK
| |
Collapse
|
6
|
Song P, Anna B, E Scott G, Chamley LW. The interaction of placental micro-EVs with immune cells in vivo and in vitro. Am J Reprod Immunol 2023; 90:e13766. [PMID: 37641368 DOI: 10.1111/aji.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Considerable evidence suggests that placental extracellular vesicles (EVs) interact with most types of leukocytes in vitro but in vivo biodistribution studies question whether these interactions are reflective of the situation in vivo. METHOD OF STUDY CellTracker Red CMTPX stained human placental micro-EVs were isolated from first trimester placental explant cultures. Equivalent amounts of micro-EVs were cultured with murine leukocytes in vitro or injected into pregnant or non-pregnant mice. After intravenous injection, on day 12.5 of gestation, major organs and blood samples were harvested 30 min or 24 h post injection. RESULTS We screened cryosections of the organs and confirmed that human placental EVs were specifically localised to the spleen, liver and the lungs 30 min or 24 h after injection. Immunohistochemistry showed that most of the EVs interacted with macrophages in those three organs and some of them also associated with T and B lymphocytes in the spleen or endothelial cells in the lungs and liver. Flow cytometry demonstrated that there was very little interaction between circulating leukocytes and EVs in vivo. While minimal, significantly more EVs interacted with leukocytes in pregnant than nonpregnant mice. CONCLUSION The major interaction between human placental micro-EVs and maternal leukocytes appear to be with macrophages predominantly in the splenic marginal zone, liver and lungs with little interaction between EVs and circulating leukocytes. Since marginal zone macrophages induce tolerance after phagocytosing apoptotic bodies it is likely that phagocytosis of placental EVs by marginal zone macrophages may also contribute to maternal immune tolerance.
Collapse
Affiliation(s)
- Paek Song
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations (HEVI), The University of Auckland, Auckland, New Zealand
| | - Brooks Anna
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Graham E Scott
- Department of Molecular Medicine and Pathology, School of Medical Sciences, and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Lawrence Willam Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations (HEVI), The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Chen X, Tijono S, Tsai B, Chamley L, Ching LM, Chen Q. A pilot in vivo study: potential ovarian cancer therapeutic by placental extracellular vesicles. Biosci Rep 2023; 43:BSR20230307. [PMID: 37503762 PMCID: PMC10442519 DOI: 10.1042/bsr20230307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023] Open
Abstract
The biological links between cancer and pregnancy are of interest due to parallel proliferative, immunosuppressive, and invasive mechanisms between tumour and placental cells. However, the proliferation and invasion of placental cells are strictly regulated. The understanding of this regulation is largely unknown. Placental extracellular vesicles (EVs) may play an important role in this regulation, as placental EVs are known to contribute to maternal adaptation, including adaptation of the vascular and immune systems. We have previously reported that placental EVs significantly inhibited ovarian cancer cell proliferation by delaying the progression of the cell cycle. We, therefore, performed this pilot in vivo study to investigate whether placental EVs can also inhibit ovarian tumour growth in a SKOV-3 human tumour xenograft model. A single intraperitoneal injection of placental EVs at 15 days post tumour implantation, significantly inhibited the growth of the tumours in our in vivo model. Signs of cellular necrosis were observed in the ovarian tumour tissues, but not in other organs collected from mice that had been treated with placental EVs. Expression of receptor-interacting kinase 1 (RIPK1) and mixed linkage kinase domain-like (MLKL), which are mediators of necroptosis were not observed in our xenografted tumours. However, extensive infiltration of CD169+ macrophages and NK cells in ovarian tumour tissues collected from placental micro-EVs treated mice were observed. We demonstrate here that inhibition of ovarian tumour growth in our xenograft model by placental EVs involves cellular necrosis and infiltration of CD169+ macrophages and NK cells into the tumour tissues.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sofian Tijono
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Bridget Tsai
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Lawrence William Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Ribovski L, Joshi B, Gao J, Zuhorn I. Breaking free: endocytosis and endosomal escape of extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:283-305. [PMID: 39697985 PMCID: PMC11648447 DOI: 10.20517/evcna.2023.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural micro-/nanoparticles that play an important role in intercellular communication. They are secreted by producer/donor cells and subsequent uptake by recipient/acceptor cells may result in phenotypic changes in these cells due to the delivery of cargo molecules, including lipids, RNA, and proteins. The process of endocytosis is widely described as the main mechanism responsible for cellular uptake of EVs, with endosomal escape of cargo molecules being a necessity for the functional delivery of EV cargo. Equivalent to synthetic micro-/nanoparticles, the properties of EVs, such as size and composition, together with environmental factors such as temperature, pH, and extracellular fluid composition, codetermine the interactions of EVs with cells, from binding to uptake, intracellular trafficking, and cargo release. Innovative assays for detection and quantification of the different steps in the EV formation and EV-mediated cargo delivery process have provided valuable insight into the biogenesis and cellular processing of EVs and their cargo, revealing the occurrence of EV recycling and degradation, next to functional cargo delivery, with the back fusion of the EV with the endosomal membrane standing out as a common cargo release pathway. In view of the significant potential for developing EVs as drug delivery systems, this review discusses the interaction of EVs with biological membranes en route to cargo delivery, highlighting the reported techniques for studying EV internalization and intracellular trafficking, EV-membrane fusion, endosomal permeabilization, and cargo delivery, including functional delivery of RNA cargo.
Collapse
Affiliation(s)
- Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
- Authors contributed equally
| | - Bhagyashree Joshi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, the Netherlands
- Authors contributed equally
| | - Jie Gao
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Inge Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| |
Collapse
|
9
|
Abstract
Pre-eclampsia is a life-threatening disease of pregnancy unique to humans and a leading cause of maternal and neonatal morbidity and mortality. Women who survive pre-eclampsia have reduced life expectancy, with increased risks of stroke, cardiovascular disease and diabetes, while babies from a pre-eclamptic pregnancy have increased risks of preterm birth, perinatal death and neurodevelopmental disability and cardiovascular and metabolic disease later in life. Pre-eclampsia is a complex multisystem disease, diagnosed by sudden-onset hypertension (>20 weeks of gestation) and at least one other associated complication, including proteinuria, maternal organ dysfunction or uteroplacental dysfunction. Pre-eclampsia is found only when a placenta is or was recently present and is classified as preterm (delivery <37 weeks of gestation), term (delivery ≥37 weeks of gestation) and postpartum pre-eclampsia. The maternal syndrome of pre-eclampsia is driven by a dysfunctional placenta, which releases factors into maternal blood causing systemic inflammation and widespread maternal endothelial dysfunction. Available treatments target maternal hypertension and seizures, but the only 'cure' for pre-eclampsia is delivery of the dysfunctional placenta and baby, often prematurely. Despite decades of research, the aetiology of pre-eclampsia, particularly of term and postpartum pre-eclampsia, remains poorly defined. Significant advances have been made in the prediction and prevention of preterm pre-eclampsia, which is predicted in early pregnancy through combined screening and is prevented with daily low-dose aspirin, starting before 16 weeks of gestation. By contrast, the prediction of term and postpartum pre-eclampsia is limited and there are no preventive treatments. Future research must investigate the pathogenesis of pre-eclampsia, in particular of term and postpartum pre-eclampsia, and evaluate new prognostic tests and treatments in adequately powered clinical trials.
Collapse
|