1
|
FawzuAmeer S, Elsaka M, Kahtoon S, Kerzabi RI, Casu G, Giordo R, Zayed H, Pintus G. Exploring the role of exosomes in the pathogenesis and treatment of cardiomyopathies: A comprehensive literature review. Life Sci 2024; 357:123063. [PMID: 39299384 DOI: 10.1016/j.lfs.2024.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Exosomes, a subset of small extracellular vesicles that play a crucial role in intercellular communication, have garnered significant attention for their potential applications in the diagnosis and treatment of cardiomyopathies. Cardiomyopathies, which encompass a spectrum of heart muscle disorders, present complex challenges in diagnosis and management. Understanding the role of exosomes in the etiology of cardiomyopathies such as dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (AC), and hypertrophic cardiomyopathy (HCM) may open new possibilities for therapeutic intervention and diagnosis. Exosomes have indeed demonstrated promise as diagnostic biomarkers, particularly in identifying cardiac conditions such as atrial fibrillation (AF) and in the timely classification of high-risk patients with different forms of cardiomyopathy. In DCM, exosomes have been implicated in mediating pathological responses in cardiomyocytes, potentially exacerbating disease progression. Moreover, in RCM, AC, and HCM, exosomes present significant potential as diagnostic biomarkers and therapeutic targets, offering insights into disease pathogenesis and potential avenues for intervention. Understanding the influence of exosomes on disease progression and identifying the specific molecular pathways involved in cardiomyopathy pathogenesis may significantly advance diagnostic and treatment strategies. While key findings highlight the multifaceted role of exosomes in cardiomyopathy, they also emphasize the need for further research to elucidate molecular mechanisms and translate findings into clinical practice. This review highlights the evolving landscape of exosome research in cardiomyopathies and underscores the importance of ongoing investigations to harness the full potential of exosomes in improving patient outcomes.
Collapse
Affiliation(s)
- Shadiya FawzuAmeer
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Manar Elsaka
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Summaiya Kahtoon
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Rabia-Illhem Kerzabi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Gavino Casu
- Clinical and Interventional Cardiology, Sassari University Hospital, Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
2
|
Bonet F, Hernandez-Torres F, Ramos-Sánchez M, Quezada-Feijoo M, Bermúdez-García A, Daroca T, Alonso-Villa E, García-Padilla C, Mangas A, Toro R. Unraveling the Etiology of Dilated Cardiomyopathy through Differential miRNA-mRNA Interactome. Biomolecules 2024; 14:524. [PMID: 38785931 PMCID: PMC11117812 DOI: 10.3390/biom14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.
Collapse
Affiliation(s)
- Fernando Bonet
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Mónica Ramos-Sánchez
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Aníbal Bermúdez-García
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Tomás Daroca
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Elena Alonso-Villa
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | | | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| |
Collapse
|
3
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Chen Y, Cai WK, Yu J, Shen M, Zhou JH, Yang SY, Liu W, Lu S, Shi YK, Yang LX. Integrated analysis of differentially expressed genes and miRNA expression profiles in dilated cardiomyopathy. Heliyon 2024; 10:e25569. [PMID: 38384527 PMCID: PMC10878877 DOI: 10.1016/j.heliyon.2024.e25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background Although dilated cardiomyopathy (DCM) is a prevalent form of cardiomyopathy, the molecular mechanisms underlying its pathogenesis and progression remain poorly understood. It is possible to identify and validate DCM-associated genes, pathways, and miRNAs using bioinformatics analysis coupled with clinical validation methods. Methods Our analysis was performed using 3 mRNA datasets and 1 miRNA database. We employed several approaches, including gene ontology (GO) analysis, KEGG pathway enrichment analysis, protein-protein interaction networks analysis, and analysis of hub genes to identify critical genes and pathways linked to DCM. We constructed a regulatory network for DCM that involves interactions between miRNAs and mRNAs. We also validated the differently expressed miRNAs in clinical samples (87 DCM ,83 Normal) using qRT-PCR.The miRNAs' clinical value was evaluated by receiver operating characteristic curves (ROCs). Results 78 differentially expressed genes (DEGs) and 170 differentially expressed miRNAs (DEMs) were associated with DCM. The top five GO annotations were collagen-containing extracellular matrix, cell substrate adhesion, negative regulation of cell differentiation, and inflammatory response. The most enriched KEGG pathways were the Neurotrophin signaling pathway, Thyroid hormone signaling pathway, Wnt signaling pathway, and Axon guidance. In the PPI network, we identified 10 hub genes, and in the miRNA-mRNA regulatory network, we identified 8 hub genes and 15 miRNAs. In the clinical validation, we found 13 miRNAs with an AUC value greater than 0.9. Conclusion Our research offers novel insights into the underlying mechanisms of DCM and has implications for identifying potential targets for diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Wen-Ke Cai
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Ming Shen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Jin-Huan Zhou
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Sheng-Yu Yang
- Department of Urology Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Wei Liu
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Si Lu
- Department of Clinical Medical College, Dali University, Dali, China
| | - Yan-Kun Shi
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Li-Xia Yang
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| |
Collapse
|
5
|
Cordoba-Caballero J, Perkins JR, García-Criado F, Gallego D, Navarro-Sánchez A, Moreno-Estellés M, Garcés C, Bonet F, Romá-Mateo C, Toro R, Perez B, Sanz P, Kohl M, Rojano E, Seoane P, Ranea JAG. Exploring miRNA-target gene pair detection in disease with coRmiT. Brief Bioinform 2024; 25:bbae060. [PMID: 38436559 PMCID: PMC10939301 DOI: 10.1093/bib/bbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024] Open
Abstract
A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.
Collapse
Affiliation(s)
- Jose Cordoba-Caballero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - James R Perkins
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - Federico García-Criado
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
| | - Diana Gallego
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Alicia Navarro-Sánchez
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
| | - Mireia Moreno-Estellés
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Concepción Garcés
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Carlos Romá-Mateo
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Departament de Fisiologia, Facultat de Medicina i Odontologia, Universitat de València, Av. Blasco Ibáñez 15, 46010, València, Spain
- Incliva Biomedical Research Institute, 46010, València, Spain
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Belén Perez
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
- Instituto de Investigación Sanitaria IdiPaZ, Madrid, Spain
| | - Pascual Sanz
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Matthias Kohl
- Faculty of Medical and Life Sciences, Furtwangen University, Germany
| | - Elena Rojano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Juan A G Ranea
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
- CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
- Instituto Nacional de Bioinformática (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), C/ Sinesio Delgado, 4, Madrid, 28029, Spain
| |
Collapse
|
6
|
Martinez-Amaro FJ, Garcia-Padilla C, Franco D, Daimi H. LncRNAs and CircRNAs in Endoplasmic Reticulum Stress: A Promising Target for Cardiovascular Disease? Int J Mol Sci 2023; 24:9888. [PMID: 37373035 DOI: 10.3390/ijms24129888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The endoplasmic reticulum (ER) is a principal subcellular organelle responsible for protein quality control in the secretory pathway, preventing protein misfolding and aggregation. Failure of protein quality control in the ER triggers several molecular mechanisms such as ER-associated degradation (ERAD), the unfolded protein response (UPR) or reticulophagy, which are activated upon ER stress (ERS) to re-establish protein homeostasis by transcriptionally and translationally regulated complex signalling pathways. However, maintenance over time of ERS leads to apoptosis if such stress cannot be alleviated. The presence of abnormal protein aggregates results in loss of cardiomyocyte protein homeostasis, which in turn results in several cardiovascular diseases such as dilated cardiomyopathy (DCM) or myocardial infarction (MI). The influence of a non-coding genome in the maintenance of proper cardiomyocyte homeostasis has been widely proven. To date, the impact of microRNAs in molecular mechanisms orchestrating ER stress response has been widely described. However, the role of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) is just beginning to be addressed given the potential role of these RNA classes as therapeutic molecules. Here, we provide a current state-of-the-art review of the roles of distinct lncRNAs and circRNAs in the modulation of ERS and UPR and their impact in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Carlos Garcia-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Houria Daimi
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
- Department of Biology, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia
| |
Collapse
|
7
|
Vrachatis DA, Papathanasiou KA, Giotaki SG, Raisakis K, Kaoukis A, Kossyvakis C, Theodorakis A, Pediotidis S, Avramides D, Siasos G, Deftereos S. Advances in the Management of Heart Failure with Reduced Ejection Fraction; The Role of SGLT2is, ARNI, Myotropes, Vericiguat, and Anti-inflammatory Agents: A Mini-review. Curr Pharm Des 2023; 29:509-518. [PMID: 36927423 DOI: 10.2174/1381612829666230316142450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/18/2023]
Abstract
Heart failure with reduced ejection fraction (HFrEF) has been associated with poor prognosis, reduced quality of life, and increased healthcare expenditure. Despite tremendous advances in HFrEF management, reduced survival and a high rate of hospitalization remain unsolved issues. Furthermore, HFrEF morbidity and economic burden are estimated to increase in the following years; hence, new therapies are constantly emerging. In the last few years, a series of landmark clinical trials have expanded our therapeutic armamentarium with a ground-breaking change in HFrEF-related outcomes. Sodium-glucose co-transporter 2 inhibitors (mainly dapagliflozin and empagliflozin) have already revolutionized the management of HFrEF patients via a significant reduction in cardiovascular mortality and heart failure hospitalizations. Furthermore, vericiguat and omecamtiv mecarbil have emerged as promising and novel disease-modifying therapies. The former restores the impaired cyclic guanosine monophosphate pathway, and the latter stimulates cardiac myosin without marked arrhythmogenesis. Both vericiguat and omecamtiv mecarbil have been shown to reduce heart failure admissions. Sacubitril/valsartan is an established and effective therapy in HFrEF patients and should be considered as a replacement for angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARBs). Lastly, inflammasome activity is implicated in HFrEF pathophysiology, and the role of anti-inflammatory agents in HFrEF trajectories is readily scrutinized, yet available therapies are ineffective. This mini-review summarizes the major and most recent studies in this field, thus covering the current advances in HFrEF therapeutics.
Collapse
Affiliation(s)
| | - Konstantinos A Papathanasiou
- Second Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, Athens, Greece
| | - Sotiria G Giotaki
- Second Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, Athens, Greece
| | | | - Andreas Kaoukis
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | | | - Andreas Theodorakis
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | - Stauros Pediotidis
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | - Dimitrios Avramides
- Deparment of Cardiology, General Hospital of Athens "G.Gennimatas", Athens, Greece
| | - Gerasimos Siasos
- Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens, Greece
| | - Spyridon Deftereos
- Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, Athens, Greece
| |
Collapse
|