1
|
Mia MS, Nayan SB, Islam MN, Talukder MEK, Hasan MS, Riazuddin M, Shadhin MST, Hossain MN, Wani TA, Zargar S, Rabby MG. Genome-wide exploration: Evolution, structural characterization, molecular docking, molecular dynamics simulation and expression analysis of sugar transporter (ST) gene family in potato (Solanum tuberosum). Comput Biol Chem 2025; 117:108402. [PMID: 40054022 DOI: 10.1016/j.compbiolchem.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/09/2025]
Abstract
Sugars are the basic structural components of carbohydrates. Sugar transport is crucial for plants to ensure their optimal growth and development. Long-distance sugar transport occurs through either diffusion-based passive or active transport mediated by transporter proteins. In potatoes, STs play a vital role in sugar transport and total sugar accumulation. To better understand the roles of these transporters, in-depth structural, protein characterization, and tissue-specific expression analysis were performed. A total of 61 StSTs were identified and classified into eight sub-families (STP, PLT, ERD6L, INT, TMT, pGlcT, SUC, and VGT). The majority of StSTs were found in the plasma membrane, and all of them were dispersed throughout the 12 chromosomes. Exon and motif counts ranged from 1-18 and 1-10, respectively. In synteny analysis with four plant genomes, the highest (38) orthologous gene pair was found with S. lycopersicum (tomato). In 3D protein modeling, the alpha helix and transmembrane helices range varied from 32 % to 78 % and 53 %-57 %, respectively. During molecular docking analysis, the lowest binding energy was observed for Glu-StINT1 (ΔG: - 6.6 kcal/mol), Fru-StVGT1 (ΔG: - 6.1 kcal/mol), Gal-StSTP10 (ΔG: - 6.5 kcal/mol), and Suc-StINT2 (ΔG: - 7.5 kcal/mol), among 244 docking results. These complexes showed significant hydrogen and hydrophobic interactions, due to having significant amino acid residues. The molecular dynamics (MD) simulation of four complexes (Glu-StINT1, Fru-StVGT1, Gal-StSTP10, and Suc-StINT2) validated the ligand's stable attachment to the intended target proteins and it can be predicted that these complexes are the best sugar transporters of potato. In RNA-seq mediated expression analysis, StSTP12, StERD6L-6, 12, StpGlcT3, StVGT1, and StVGT2, were significantly upregulated in vegetative tissues/organs, revealing their significant role in vegetative organ development. In addition, stu-miRNA395 was the largest family interacting with StERD6L-1 and StTMT2 genes, demonstrating their significant role in sulfate metabolism. The detection and visualization of potential transcription factors (TFs) like ERF, Dof, MYB, BBR-BPC, LBD, and NAC in conjunction with the StSTs gene indicate their significant contribution to stress tolerance and DNA conversion and transcription into RNA. A significant interaction of StSTs in the PPI network might be due to their cumulative role in the same signaling pathways. The integration of these findings will guide the development of programming-based sugar transporter-mediated genetic circuits to improve the sugar accumulation in potatoes using synthetic biology approaches.
Collapse
Affiliation(s)
- Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sourav Biswas Nayan
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Numan Islam
- Department of Food Science and Technology, University of Nebraska Lincoln, USA
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sakib Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Riazuddin
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Saklain Tanver Shadhin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Nayim Hossain
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
2
|
Namuunaa G, Bujin B, Yamagami A, Bolortuya B, Kawabata S, Ogawa H, Kanatani A, Shimizu M, Minami A, Mochida K, Miyakawa T, Davaapurev BO, Asami T, Batkhuu J, Nakano T. Identification and functional analyses of drought stress resistance genes by transcriptomics of the Mongolian grassland plant Chloris virgata. BMC PLANT BIOLOGY 2025; 25:44. [PMID: 39794690 PMCID: PMC11724609 DOI: 10.1186/s12870-025-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Mongolian grasslands, including the Gobi Desert, have been exposed to drought conditions with few rains. In such harsh environments, plants with highly resistant abilities against drought stress survive over long periods. We hypothesized that these plants could harbor novel and valuable genes for enhancing drought stress resistance. RESULTS In this study, we identified Chloris virgata, a Mongolian grassland plant with strong drought resistance. RNA-seq-based transcriptome analysis was performed to uncover genes associated with drought stress resistance in C. virgata. De novo transcriptome assembly revealed 25,469 protein-coding transcripts and 1,219 upregulated genes after 3- and 6-hr drought stress treatments. Analysis by homology search and Gene Ontology (GO) enrichment indicated that abscisic acid (ABA)- and drought stress-related GO terms were enriched. Among the highly induced genes, ten candidate cDNAs were selected and overexpressed in Arabidopsis. When subjected to drought stress, three of these genes conferred strong drought resistance in the transgenic plants. We named these genes Mongolian Grassland plant Drought-stress resistance genes 1, 2, and 3 (MGD1, MGD2, and MGD3). Gene expression analyses in the transformants suggested that MGD1, MGD2, and MGD3 may activate drought stress-related signalling pathways. CONCLUSION This study highlighted the drought resistance of C. virgata and identified three novel genes that enhance drought stress resistance.
Collapse
Affiliation(s)
- Ganbayar Namuunaa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Baldorj Bujin
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ayumi Yamagami
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Byambajav Bolortuya
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shintaro Kawabata
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirotaka Ogawa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Asaka Kanatani
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Minami Shimizu
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Anzu Minami
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
- Baton Zone Program, RIKEN, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takuya Miyakawa
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bekh-Ochir Davaapurev
- School of Engineering and Technology, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Javzan Batkhuu
- School of Engineering and Technology, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Takeshi Nakano
- Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Gallucci A, Giordano D, Facchiano A, Villano C, Carputo D, Aversano R. Transmembrane proteins in grape immunity: current knowledge and methodological advances. FRONTIERS IN PLANT SCIENCE 2024; 15:1515163. [PMID: 39759230 PMCID: PMC11695348 DOI: 10.3389/fpls.2024.1515163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025]
Abstract
Transmembrane proteins (TMPs) are pivotal components of plant defence mechanisms, serving as essential mediators in the response to biotic stresses. These proteins are among the most complex and diverse within plant cells, making their study challenging. In spite of this, relatively few studies have focused on the investigation and characterization of TMPs in plants. This is particularly true for grapevine. This review aims to provide a comprehensive overview of TMP-encoding genes involved in grapevine immunity. These genes include Lysin Motif Receptor-Like Kinases (LysM-RLKs), which are involved in the recognition of pathogens at the apoplastic level, Plant Respiratory Burst Oxidase Homologs (Rbohs), which generate reactive oxygen species (ROS) for host defense, and Sugars Will Eventually be Exported Transporters (SWEETs), which play a role in nutrient allocation and stress responses. Furthermore, the review discusses the methodologies employed to study TMPs, including in vivo, in vitro and in silico approaches, highlighting their strengths and limitations. In vivo studies include the assessment of TMP function in whole plants or plant tissues, while in vitro experiments focus on isolating and characterizing either specific TMPs or their components. In silico analyses utilize computational tools to predict protein structure, function, and interactions. By identifying and characterizing genes encoding TMPs involved in grapevine immunity, researchers can develop strategies to enhance grapevine resilience and lead to more sustainable viticulture.
Collapse
Affiliation(s)
- Alessia Gallucci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Deborah Giordano
- Institute of Food Science, National Research Council, Avellino, Italy
| | - Angelo Facchiano
- Institute of Food Science, National Research Council, Avellino, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
4
|
Sharma V, Mahadevaiah SS, Latha P, Gowda SA, Manohar SS, Jadhav K, Bajaj P, Joshi P, Anitha T, Jadhav MP, Sharma S, Janila P, Bhat RS, Varshney RK, Pandey MK. Dissecting genomic regions and underlying candidate genes in groundnut MAGIC population for drought tolerance. BMC PLANT BIOLOGY 2024; 24:1044. [PMID: 39497063 PMCID: PMC11536578 DOI: 10.1186/s12870-024-05749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic underpinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) population was developed and evaluated for five seasons at two locations for three consecutive years (2018-19, 2019-20 and 2020-21) under drought stress and normal environments. RESULTS Phenotyping data of drought tolerance related traits, combined with the high-quality 10,556 polymorphic SNPs, were used to perform multi-locus model genome-wide association study (GWAS) analysis. We identified 37 significant marker-trait associations (MTAs) (Bonferroni-corrected) accounting, 0.91- 9.82% of the phenotypic variance. Intriguingly, 26 significant MTAs overlap on four chromosomes (Ah03, Ah07, Ah10 and Ah18) (harboring 70% of MTAs), indicating genomic hotspot regions governing drought tolerance traits. Furthermore, important candidate genes associated with leaf senescence (NAC transcription factor), flowering (B3 domain-containing transcription factor, Ulp1 protease family, and Ankyrin repeat-containing protein), involved in chlorophyll biosynthesis (FAR1 DNA-binding domain protein), stomatal regulation (Rop guanine nucleotide exchange factor; Galacturonosyltransferases), and associated with yield traits (Fasciclin-like arabinogalactan protein 11 and Fasciclin-like arabinogalactan protein 21) were found in the vicinity of significant MTAs genomic regions. CONCLUSION The findings of our investigation have the potential to provide a basis for significant MTAs validation, gene discovery and development of functional markers, which could be employed in genomics-assisted breeding to develop climate-resilient groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | | | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - S Anjan Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Surendra S Manohar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Kanchan Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Pushpesh Joshi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - T Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Mangesh P Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India.
| |
Collapse
|
5
|
Vleugels T, Ruttink T, Ariza-Suarez D, Dubey R, Saleem A, Roldán-Ruiz I, Muylle H. GWAS for Drought Resilience Traits in Red Clover ( Trifolium pratense L.). Genes (Basel) 2024; 15:1347. [PMID: 39457472 PMCID: PMC11507065 DOI: 10.3390/genes15101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Red clover (Trifolium pratense L.) is a well-appreciated grassland crop in temperate climates but suffers from increasingly frequent and severe drought periods. Molecular markers for drought resilience (DR) would benefit breeding initiatives for red clover, as would a better understanding of the genes involved in DR. Two previous studies, as follows, have: (1) identified phenotypic DR traits in a diverse set of red clover accessions; and (2) produced genotypic data using a pooled genotyping-by-sequencing (GBS) approach in the same collection. In the present study, we performed genome-wide association studies (GWAS) for DR using the available phenotypic and genotypic data. Single nucleotide polymorphism (SNP) calling was performed using GBS data and the following two red clover genome assemblies: the recent HEN-17 assembly and the Milvus assembly. SNP positions with significant associations were used to delineate flanking regions in both genome assemblies, while functional annotations were retrieved from Medicago truncatula orthologs. GWAS revealed 19 significant SNPs in the HEN-17-derived SNP set, explaining between 5.3 and 23.2% of the phenotypic variation per SNP-trait combination for DR traits. Among the genes in the SNP-flanking regions, we identified candidate genes related to cell wall structuring, genes encoding sugar-modifying proteins, an ureide permease gene, and other genes linked to stress metabolism pathways. GWAS revealed 29 SNPs in the Milvus-derived SNP set that explained substantially more phenotypic variation for DR traits, between 5.3 and 42.3% per SNP-trait combination. Candidate genes included a DEAD-box ATP-dependent RNA helicase gene, a P-loop nucleoside triphosphate hydrolase gene, a Myb/SANT-like DNA-binding domain protein, and an ubiquitin-protein ligase gene. Most accessions in this study are genetically more closely related to the Milvus genotype than to HEN-17, possibly explaining how the Milvus-derived SNP set yielded more robust associations. The Milvus-derived SNP set pinpointed 10 genomic regions that explained more than 25% of the phenotypic variation for DR traits. A possible next step could be the implementation of these SNP markers in practical breeding programs, which would help to improve DR in red clover. Candidate genes could be further characterized in future research to unravel drought stress resilience in red clover in more detail.
Collapse
Affiliation(s)
- Tim Vleugels
- Plant Sciences Unit, ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Caritasstraat 39, 9090 Melle, Belgium; (T.R.)
| | - Tom Ruttink
- Plant Sciences Unit, ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Caritasstraat 39, 9090 Melle, Belgium; (T.R.)
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Daniel Ariza-Suarez
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Reena Dubey
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Aamir Saleem
- Laboratory of Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit, ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Caritasstraat 39, 9090 Melle, Belgium; (T.R.)
| | - Hilde Muylle
- Plant Sciences Unit, ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Caritasstraat 39, 9090 Melle, Belgium; (T.R.)
| |
Collapse
|
6
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. Biochemistry 2024; 63:2692-2703. [PMID: 39322977 PMCID: PMC11483822 DOI: 10.1021/acs.biochem.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Biswajit Gorai
- Institute
of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Integrated
Applied Mathematics Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
- Molecular
and Cellular Biotechnology Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
7
|
Wilson K, Arunachalam S. Cross-Species Insights into PR Proteins: A Comprehensive Study of Arabidopsis thaliana, Solanum lycopersicum, and Solanum tuberosum. Indian J Microbiol 2024; 64:1326-1338. [PMID: 39282158 PMCID: PMC11399520 DOI: 10.1007/s12088-024-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/18/2024] [Indexed: 09/18/2024] Open
Abstract
This study provides a comprehensive analysis of pathogenesis-related (PR) proteins, focusing on PR1, PR5, and PR10, in three plant species: Arabidopsis thaliana (At), Solanum lycopersicum (Sl), and Solanum tuberosum (St). We investigated various physico-chemical properties, including protein length, molecular weight, isoelectric point (pI), hydrophobicity, and structural characteristics, such as RMSD, using state-of-the-art tools like AlphaFold and PyMOL. Our analysis found that the SlPR10-StPR10 protein pair had the highest sequence identity (80.00%), lowest RMSD value (0.307 Å), and a high number of overlapping residues (160) among all other protein pairs, indicating their remarkable similarity. Additionally, we used bioinformatics tools such as Cello, Euk-mPLoc 2.0, and Wolfpsort to predict subcellular localization, with AtPR1, AtPR5, and SlPR5 proteins predicted to be located in the extracellular space in both Arabidopsis and S. lycopersicum, while AtPR10 was predicted to be located in the cytoplasm. This comprehensive analysis, including the use of cutting-edge structural prediction and subcellular localization tools, enhances our understanding of the structural, functional, and localization aspects of PR proteins, shedding light on their roles in plant defense mechanisms across different plant species. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01343-1.
Collapse
Affiliation(s)
- Karun Wilson
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Sathiavelu Arunachalam
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
8
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593448. [PMID: 38798363 PMCID: PMC11118388 DOI: 10.1101/2024.05.09.593448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
| | - Biswajit Gorai
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
- Department of Chemistry, University of New Hampshire, Durham 03824, New Hampshire, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham 03824, New Hampshire, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham 03824, New Hampshire, USA
| |
Collapse
|
9
|
He Y, Peng J, Jia N, Wang X, Ma J, Wang H, Zhang C, Wang E, Hu D, Wang Z. Up-regulation of growth-related gene expression in tobacco by volatile compounds released by Bacillus velezensis WSW007. Sci Rep 2024; 14:18087. [PMID: 39103433 PMCID: PMC11300851 DOI: 10.1038/s41598-024-68274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
In order to investigate the mechanism of plant growth promoting (PGP) effects of strain Bacillus velezensis WSW007, its PGP traits and production of volatile organic compounds (VOCs) were tested. The effects of VOCs produced by strain WSW007 on plant growth were observed by co-culturing this strain with tobacco seedlings in I-plates. Meanwhile, the effects of VOCs on tobacco gene expression were analysed by a transcriptome analysis and VOCs were identified by solid phase micro extraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) analysis. As results, strains WSW007 produced acetic acid and siderophore, and could solubilize phosphate; while it also significantly increased the fresh weight of tobacco seedlings via production of VOCs. In transcriptome analysis, plants co-cultured with strain WSW007 presented the highest up-regulated expression for the genes involved in plant growth and development processes, implying that the bacterial VOCs played a role as regulator of plant gene expression. Conclusively, the up-regulation in expression of growth- and development-related genes via VOCs production is an important PGP mechanism in strain B. velezensis WSW007.
Collapse
Affiliation(s)
- Yuxi He
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jieli Peng
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Nan Jia
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jia Ma
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hao Wang
- College of Life Science, Northeast Agricultural University, Harbin City, Heilongjiang Province, China
| | - Cuimian Zhang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Mexico City, Mexico
| | - Dong Hu
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
Balakrishnan S, Rahman RNZRA, Noor NDM, Latip W, Ali MSM. Expression and functional analysis of a recombinant aquaporin Z from Antarctic Pseudomonas sp. AMS3. Proteins 2024; 92:874-885. [PMID: 38477414 DOI: 10.1002/prot.26680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Aquaporin (AQP) is a water channel protein from the family of transmembrane proteins which facilitates the movement of water across the cell membrane. It is ubiquitous in nature, however the understanding of the water transport mechanism, especially for AQPs in microbes adapted to low temperatures, remains limited. AQP also has been recognized for its ability to be used for water filtration, but knowledge of the biochemical features necessary for its potential applications in industrial processes has been lacking. Therefore, this research was conducted to express, extract, solubilize, purify, and study the functional adaptations of the aquaporin Z family from Pseudomonas sp. AMS3 via molecular approaches. In this study, AqpZ1 AMS3 was successfully subcloned and expressed in E. coli BL21 (DE3) as a recombinant protein. The AqpZ1 AMS3 gene was expressed under optimized conditions and the best optimized condition for the AQP was in 0.5 mM IPTG incubated at 25°C for 20 h induction time. A zwitterionic mild detergent [(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate was the suitable surfactant for the protein solubilization. The protein was then purified via affinity chromatography. Liposome and proteoliposome was reconstituted to determine the particle size using dynamic light scattering. This information obtained from this psychrophilic AQP identified provides new insights into the structural adaptation of this protein at low temperatures and could be useful for low temperature application and molecular engineering purposes in the future.
Collapse
Affiliation(s)
- S Balakrishnan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - R N Z R A Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - N D M Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - W Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M S M Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Kim KR, Park SY, Kim H, Kim J, Hong JM, Kim SY, Yu JN. Genome assembly and microsatellite marker development using Illumina and PacBio sequencing in Persicaria maackiana (Polygonaceae) from Korea. Genes Genomics 2024; 46:187-202. [PMID: 38240922 DOI: 10.1007/s13258-023-01479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/23/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Persicaria maackiana (Regel) is a potential medicinal plant that exerts anti-diabetic effects. However, the lack of genomic information on P. maackiana hinders research at the molecular level. OBJECTIVE Herein, we aimed to construct a draft genome assembly and obtain comprehensive genomic information on P. maackiana using high-throughput sequencing tools PacBio Sequel II and Illumina. METHODS Persicaria maackiana samples from three natural populations in Gaecheon, Gichi, and Uiryeong reservoirs in South Korea were used to generate genomic DNA libraries, perform genome de novo assembly, gene ontology analysis, phylogenetic tree analysis, genotyping, and identify microsatellite markers. RESULTS The assembled P. maackiana genome yielded 32,179 contigs. Assessment of assembly integrity revealed 1503 (93.12%) complete Benchmarking Universal Single-Copy Orthologs. A total of 64,712 protein-coding genes were predicted and annotated successfully in the protein database. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs, 13,778 genes were annotated into 18 categories. Genes that activated AMPK were identified in the KEGG pathway. A total of 316,992 microsatellite loci were identified, and primers targeting the flanking regions were developed for 292,059 microsatellite loci. Of these, 150 primer sets were randomly selected for amplification, and 30 of these primer sets were identified as polymorphic. These primers amplified 3-9 alleles. The mean observed and expected heterozygosity were 0.189 and 0.593, respectively. Polymorphism information content values of the markers were 0.361-0.754. CONCLUSION Collectively, our study provides a valuable resource for future comparative genomics, phylogeny, and population studies of P. maackiana.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - So Young Park
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Heesoo Kim
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Jiyeon Kim
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Jeong Min Hong
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Sun-Yu Kim
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Jeong-Nam Yu
- Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea.
| |
Collapse
|
12
|
Mallikarjuna MG, Tomar R, Lohithaswa HC, Sahu S, Mishra DC, Rao AR, Chinnusamy V. Genome-wide identification of potassium channels in maize showed evolutionary patterns and variable functional responses to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108235. [PMID: 38039585 DOI: 10.1016/j.plaphy.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Potassium (K) channels are essential components of plant biology, mediating not only K ion (K+) homeostasis but also regulating several physiological processes and stress tolerance. In the current investigation, we identified 27 K+ channels in maize and deciphered the evolution and divergence pattern with four monocots and five dicot species. Chromosomal localization and expansion of K+ channel genes showed uneven distribution and were independent of genome size. The dispersed duplication is the major force in expanding K+ channels in the target genomes. The mean Ka/Ks ratio of <0.5 in paralogs and orthologs indicates horizontal and vertical expansions of K+ channel genes under strong purifying selection. The one-to-one K+ channel orthologs were prominent among the closely related species, with higher synteny between maize and the rest of the monocots. Comprehensive K+ channels promoter analysis revealed various cis-regulatory elements mediating stress tolerance with the predominance of MYB and STRE binding sites. The regulatory network showed AP2-EREBP TFs, miR164 and miR399 are prominent regulatory elements of K+ channels. The qRT-PCR analysis of K+ channels and regulatory miRNAs showed significant expressions in response to drought and waterlogging stresses. The present study expanded the knowledge on K+ channels in maize and will serve as a basis for an in-depth functional analysis.
Collapse
Affiliation(s)
| | - Rakhi Tomar
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Sarika Sahu
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dwijesh Chandra Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Atmakuri Ramakrishna Rao
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
13
|
Zheng Q, Yu Q, Yao W, Lv K, Zhang N, Xu W. Decoding VaCOLD1 Function in Grapevines: A Membrane Protein Enhancing Cold Stress Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19357-19371. [PMID: 38037352 DOI: 10.1021/acs.jafc.3c05101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In globally cultivated grapevines, low-temperature stress poses a persistent challenge. Although COLD1 is recognized as a cold receptor in rice, its function in grapevine cold signaling is unclear. Here, we identified VaCOLD1, a transmembrane protein from the cold-tolerant Vitis amurensis Rupr, which is primarily located on plasma and endoplasmic reticulum membranes. Broadly expressed across multiple tissues, VaCOLD1 responds to various environmental stresses, particularly to cold. Its promoter contains distinct hormone- and stress-responsive elements, with GUS assays confirming widespread expression in Arabidopsis thaliana. Validation of interaction between VaCOLD1 and VaGPA1, together with their combined expression in yeast and grape calli, notably improved cold endurance. Overexpression of VaCOLD1 enhances cold tolerance in Arabidopsis by strengthening the CBF-COR signaling pathway. This is achieved through shielding against osmotic disturbances and modifying the expression of ABA-mediated genes. These findings emphasize the critical role of the VaCOLD1-VaGPA1 complex in mediating the response to cold stress via the CBF-COR pathway.
Collapse
Affiliation(s)
- Qiaoling Zheng
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Wenkong Yao
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Kai Lv
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Ningbo Zhang
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| | - Weirong Xu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Enology & Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
| |
Collapse
|
14
|
Fu W, MacGregor DR, Comont D, Saski CA. Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass ( Alopecurus myosuroides) Populations. Genes (Basel) 2023; 14:1905. [PMID: 37895254 PMCID: PMC10606437 DOI: 10.3390/genes14101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.
Collapse
Affiliation(s)
- Wangfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Dana R. MacGregor
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - David Comont
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
15
|
Ahn E, Botkin J, Ellur V, Lee Y, Poudel K, Prom LK, Magill C. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2344. [PMID: 37375969 DOI: 10.3390/plants12122344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Sorghum is considered the fifth most important crop in the world. Despite the potential value of Senegalese germplasm for various traits, such as resistance to fungal diseases, there is limited information on the study of sorghum seed morphology. In this study, 162 Senegalese germplasms were evaluated for seed area size, length, width, length-to-width ratio, perimeter, circularity, the distance between the intersection of length & width (IS) and center of gravity (CG), and seed darkness and brightness by scanning and analyzing morphology-related traits with SmartGrain software at the USDA-ARS Plant Science Research Unit. Correlations between seed morphology-related traits and traits associated with anthracnose and head smut resistance were analyzed. Lastly, genome-wide association studies were performed on phenotypic data collected from over 16,000 seeds and 193,727 publicly available single nucleotide polymorphisms (SNPs). Several significant SNPs were found and mapped to the reference sorghum genome to uncover multiple candidate genes potentially associated with seed morphology. The results indicate clear correlations among seed morphology-related traits and potential associations between seed morphology and the defense response of sorghum. GWAS analysis listed candidate genes associated with seed morphologies that can be used for sorghum breeding in the future.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Vishnutej Ellur
- Molecular Plant Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yoonjung Lee
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kabita Poudel
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Chen Y, Yang W, Gao R, Chen Y, Zhou Y, Xie J, Zhang F. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice ( Oryza rufipogon Griff.) Responding to Salt Stress. Int J Mol Sci 2023; 24:ijms24044069. [PMID: 36835475 PMCID: PMC9960954 DOI: 10.3390/ijms24044069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Rice (Oryza sativa) is a staple food for more than half of the world's population, and its production is critical for global food security. Moreover, rice yield decreases when exposed to abiotic stresses, such as salinity, which is one of the most detrimental factors for rice production. According to recent trends, as global temperatures continue to rise due to climate change, more rice fields may become saltier. Dongxiang wild rice (Oryza rufipogon Griff., DXWR) is a progenitor of cultivated rice and has a high tolerance to salt stress, making it useful for studying the regulatory mechanisms of salt stress tolerance. However, the regulatory mechanism of miRNA-mediated salt stress response in DXWR remains unclear. In this study, miRNA sequencing was performed to identify miRNAs and their putative target genes in response to salt stress in order to better understand the roles of miRNAs in DXWR salt stress tolerance. A total of 874 known and 476 novel miRNAs were identified, and the expression levels of 164 miRNAs were found to be significantly altered under salt stress. The stem-loop quantitative real-time PCR (qRT-PCR) expression levels of randomly selected miRNAs were largely consistent with the miRNA sequencing results, suggesting that the sequencing results were reliable. The gene ontology (GO) analysis indicated that the predicted target genes of salt-responsive miRNAs were involved in diverse biological pathways of stress tolerance. This study contributes to our understanding of DXWR salt tolerance mechanisms regulated by miRNAs and may ultimately improve salt tolerance in cultivated rice breeding using genetic methods in the future.
Collapse
Affiliation(s)
- Yong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Wanling Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Rifang Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yaling Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Jiankun Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|