1
|
Huang N, Ruan L, Zhang J, Wang Y, Shen Q, Deng Y, Liu Y. Improved physicochemical and functional properties of dietary fiber from matcha fermented by Trichoderma viride. Food Chem 2024; 460:140784. [PMID: 39126952 DOI: 10.1016/j.foodchem.2024.140784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The low-grade matcha is rich in insoluble dietary fiber. Trichoderma viride was used to increase the soluble dietary fiber to improve its functional properties. The soluble dietary fiber content increased from 6.74% to 15.24%. Pectin, hemicellulose, maltose, d-xylose, and glucose contents increased by 63.35% and 11.54%, 2.18, 0.11, and 7.04 mg/g, respectively. Trichoderma viride fermentation disrupted the dense structure of insoluble dietary fiber, resulting in a honeycomb structure and improving crystallinity by 22.75%. These structural changes led to an improved cation exchange capacity from 1.69 to 4.22 mmol/g, an increase in the inhibitory effect of α-amylase from 47.38% to 72.04%, and a 2.13-fold in the ferrous ion scavenging ability, and the IC50 values of superoxide anion was reduced from 7.00 to 1.54 mg/mL, respectively. Therefore, Trichoderma viride fermentation is an excellent method for improving the quality of dietary fiber in matcha processing by-products.
Collapse
Affiliation(s)
- Nanhuan Huang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Long Ruan
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Jing Zhang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Yongsheng Wang
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China
| | - Qiang Shen
- Guizhou Tea Research Institute, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550006, China
| | - Yanli Deng
- College of Tea, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang, Guizhou 550025, China.
| | - Yong Liu
- CAS Key Laboratory for Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
2
|
Xue C, Huang X, Zhao Y. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep 2024; 14:28620. [PMID: 39562785 PMCID: PMC11576853 DOI: 10.1038/s41598-024-80143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Tea plants (Camellia sinensis L.) are prone to spring frosts, leading to substantial economic damage. WRKY transcription factors are key in plant abiotic stress responses, yet the role of CsWRKY29 in freezing tolerance is unclear. In this study, quantitative real-time PCR (qRT-PCR) and transient green fluorescent protein assay revealed that CsWRKY29 localizes to the nucleus and its expression is induced by cold and abscisic acid (ABA). CsWRKY29 overexpression in Arabidopsis enhanced freezing tolerance, reduced electrolyte leakage, increased soluble sugars, and boosted superoxide dismutase activity, with upregulated COR genes. These lines also showed heightened ABA and glucose sensitivity. Cold treatment of CsWRKY29-overexpressing lines upregulated AtABI5, AtHXK1, and AtSUS4 compared to wild type, and yeast one-hybrid assays confirmed CsWRKY29 binding to the W-box in the CsABI5 promoter. Furthermore, the application of virus-induced gene silencing (VIGS) technology to reduce CsWRKY29 expression in tea plants revealed a significant decrease in the transcript levels of CsCBFs, CsABI5, CsHXK1, and CsSUS4 in the silenced plants. In summary, our findings indicate that CsWRKY29 may serve as a critical transcription factor that contributes to freezing tolerance, ABA responsiveness, and sugar metabolism within tea plants.
Collapse
Affiliation(s)
- Chengjin Xue
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhen Huang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| | - Yichen Zhao
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Ma X, Liu J, Li H, Wang W, Liu L, Wang P, Hu J, Zhang X, Qu F. Greenhouse covering cultivation promotes chlorophyll accumulation of tea plant (Camellia sinensis) by activating relevant gene expression and enzyme activity. BMC PLANT BIOLOGY 2024; 24:455. [PMID: 38789917 PMCID: PMC11127325 DOI: 10.1186/s12870-024-05149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically important woody crops. Plastic greenhouse covering cultivation has been widely used in tea areas of northern China. Chlorophyll is not only the crucial pigment for green tea, but also plays an important role in the growth and development of tea plants. Currently, little is known about the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves. RESULTS To investigate the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves, color difference values, chlorophyll contents, gene expression, enzyme activities and photosynthetic parameters were analyzed in our study. Sensory evaluation showed the color of appearance, liquor and infused leaves of greenhouse tea was greener than field tea. Color difference analysis for tea liquor revealed that the value of ∆L, ∆b and b/a of greenhouse tea was significantly higher than field tea. Significant increase in chlorophyll content, intracellular CO2, stomatal conductance, transpiration rate, and net photosynthetic rate was observed in greenhouse tea leaves. The gene expression and activities of chlorophyll-metabolism-related enzymes in tea leaves were also activated by greenhouse covering. CONCLUSION The higher contents of chlorophyll a, chlorophyll b and total chlorophyll in greenhouse tea samples were primarily due to higher gene expression and activities of chlorophyll-metabolism-related enzymes especially, chlorophyll a synthetase (chlG), pheophorbide a oxygenase (PAO) and chlorophyllide a oxygenase (CAO) in tea leaves covered by greenhouse. In general, our results revealed the molecular basis of chlorophyll metabolism in tea leaves caused by plastic greenhouse covering cultivation, which had great significance in production of greenhouse tea.
Collapse
Affiliation(s)
- Xueming Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jixian Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenzhuo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Liu
- Bureau of Agriculture and Rural Affairs of Laoshan District, Qingdao, 266061, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengfeng Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Shu Z, Ji Q, He T, Zhou D, Zheng S, Zhou H, He W. Combined metabolome and transcriptome analyses reveal that growing under Red shade affects secondary metabolite content in Huangjinya green tea. Front Genet 2024; 15:1365243. [PMID: 38660681 PMCID: PMC11039865 DOI: 10.3389/fgene.2024.1365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Shading treatments impact the tea (Camellia sinensis L.) quality. The sunlight sensitive varieties can be grown under shading nets for better growth and secondary metabolite content. Here, we studied the responses of a sunlight sensitive green tea variety "Huangjinya" by growing under colored shading nets (red, yellow, blue, and black (75% and 95%) shading rates) to find out the most suitable color of the shading net. Red shading was the most promising treatment as it positively affected the weight and length of 100 one-bud-three leaves and reduced the degree and rate of new shoots burn compared to control (natural sunlight). We then explored the comparative metabolomic changes in response to red shading by using UPLC-ESI-MS/MS system. The amino acids and derivatives, flavonoids, and alkaloids were downaccumulated whereas lipids, organic acids, and lignans were upaccumulated in Red shade grown tea samples. The red shading nets caused a decreased catechin, epicatechin, dopamine, and L-tyramine contents but increased caffeine content. We then employed transcriptome sequencing to find key changes in expressions of related genes and pathways. Notably, key genes associated with the phenylpropanoid and flavonoid biosynthesis pathways exhibited complex regulation. These expression changes suggested a potential trend of polymerization or condensation of simple molecules like catechin or pelargonidin into larger molecules like glucoside or proanthocyanidins. Here, Red shading net triggered higher expression of genes enriched in lipid biosynthesis and jasmonic acid biosynthesis, suggesting an interplay of fatty acids and JA in improving tea performance. These findings contribute to the metabolic responses of Huangjinya tea to red shading nets which might have implications for flavor and health benefits. Our data provide a foundation for further exploration and optimization of cultivation practices for this unique tea variety.
Collapse
Affiliation(s)
| | | | | | | | | | - Huijuan Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| | - Weizhong He
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
5
|
Jing X, Chen P, Jin X, Lei J, Wang L, Chai S, Yang X. Physiological, Photosynthetic, and Transcriptomics Insights into the Influence of Shading on Leafy Sweet Potato. Genes (Basel) 2023; 14:2112. [PMID: 38136933 PMCID: PMC10742944 DOI: 10.3390/genes14122112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Leafy sweet potato is a new type of sweet potato, whose leaves and stems are used as green vegetables. However, sweet potato tips can be affected by pre-harvest factors, especially the intensity of light. At present, intercropping, greenhouse planting, and photovoltaic agriculture have become common planting modes for sweet potato. Likewise, they can also cause insufficient light conditions or even low light stress. This research aimed to evaluate the influence of four different shading levels (no shading, 30%, 50%, and 70% shading degree) on the growth profile of sweet potato leaves. The net photosynthetic rate, chlorophyll pigments, carbohydrates, and polyphenol components were determined. Our findings displayed that shading reduced the content of the soluble sugar, starch, and sucrose of leaves, as well as the yield and Pn. The concentrations of Chl a, Chl b, and total Chl were increased and the Chl a/b ratio was decreased for the more efficient interception and absorption of light under shading conditions. In addition, 30% and 50% shading increased the total phenolic, total flavonoids, and chlorogenic acid. Transcriptome analysis indicated that genes related to the antioxidant, secondary metabolism of phenols and flavonoids, photosynthesis, and MAPK signaling pathway were altered in response to shading stresses. We concluded that 30% shading induced a high expression of antioxidant genes, while genes related to the secondary metabolism of phenols and flavonoids were upregulated by 50% shading. And the MAPK signaling pathway was modulated under 70% shading, and most stress-related genes were downregulated. Moreover, the genes involved in photosynthesis, such as chloroplast development, introns splicing, and Chlorophyll synthesis, were upregulated as shading levels increased. This research provides a new theoretical basis for understanding the tolerance and adaptation mechanism of leafy sweet potato in low light environments.
Collapse
Affiliation(s)
- Xiaojing Jing
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
- Agricultural College, Yangtze University, Jingzhou 434022, China
| | - Peiru Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (X.J.); (P.C.); (X.J.); (J.L.); (L.W.); (S.C.)
| |
Collapse
|
6
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
7
|
Phuah YQ, Chang SK, Ng WJ, Lam MQ, Ee KY. A review on matcha: Chemical composition, health benefits, with insights on its quality control by applying chemometrics and multi-omics. Food Res Int 2023; 170:113007. [PMID: 37316075 DOI: 10.1016/j.foodres.2023.113007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
This review discussed the origin, manufacturing process, chemical composition, factors affecting quality and health benefits of matcha (Camellia sinensis), and the application of chemometrics and multi-omics in the science of matcha. The discussion primarily distinguishes between matcha and regular green tea with processing and compositional factors, and demonstrates beneficial health effects of consuming matcha. Preferred Reporting Items for Systematic Reviews and Meta-Analyses was adopted to search for relevant information in this review. Boolean operators were incorporated to explore related sources in various databases. Notably, climate, cultivar, maturity of tea leaves, grinding process and brewing temperature impact on the overall quality of matcha. Besides, sufficient shading prior to harvesting significantly increases the contents of theanine and chlorophyll in the tea leaves. Furthermore, the ground whole tea leaf powder delivers matcha with the greatest benefits to the consumers. The health promoting benefits of matcha are mainly contributed by its micro-nutrients and the antioxidative phytochemicals, specifically epigallocatechin-gallate, theanine and caffeine. Collectively, the chemical composition of matcha affected its quality and health benefits significantly. To this end, more studies are required to elucidate the biological mechanisms of these compounds for human health. Chemometrics and multi-omics technologies are useful to fill up the research gaps identified in this review.
Collapse
Affiliation(s)
- Yi Qian Phuah
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Wen Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Ming Quan Lam
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Kah Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia; Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| |
Collapse
|
8
|
Zhang X, Liu K, Tang Q, Zeng L, Wu Z. Light Intensity Regulates Low-Temperature Adaptability of Tea Plant through ROS Stress and Developmental Programs. Int J Mol Sci 2023; 24:9852. [PMID: 37373002 DOI: 10.3390/ijms24129852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Low-temperature stress limits global tea planting areas and production efficiency. Light is another essential ecological factor that acts in conjunction with temperature in the plant life cycle. However, it is unclear whether the differential light environment affects the low temperature adaptability of tea plant (Camellia sect. Thea). In this study, tea plant materials in three groups of light intensity treatments showed differentiated characteristics for low-temperature adaptability. Strong light (ST, 240 μmol·m-2·s-1) caused the degradation of chlorophyll and a decrease in peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities, as well as an increase in soluble sugar, soluble protein, malondialdehyde (MDA), and relative conductivity in tea leaves. In contrast, antioxidant enzyme activities, chlorophyll content, and relative conductivity were highest in weak light (WT, 15 μmol·m-2·s-1). Damage was observed in both ST and WT materials relative to moderate light intensity (MT, 160 μmol·m-2·s-1) in a frost resistance test. Chlorophyll degradation in strong light was a behavior that prevented photodamage, and the maximum photosynthetic quantum yield of PS II (Fv/Fm) decreased with increasing light intensity. This suggests that the browning that occurs on the leaf surface of ST materials through frost may have been stressed by the previous increase in reactive oxygen species (ROS). Frost intolerance of WT materials is mainly related to delayed tissue development and tenderness holding. Interestingly, transcriptome sequencing revealed that stronger light favors starch biosynthesis, while cellulose biosynthesis is enhanced in weaker light. It showed that light intensity mediated the form of carbon fixation in tea plant, and this was associated with low-temperature adaptability.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Ye JH, Fang QT, Zeng L, Liu RY, Lu L, Dong JJ, Yin JF, Liang YR, Xu YQ, Liu ZH. A comprehensive review of matcha: production, food application, potential health benefits, and gastrointestinal fate of main phenolics. Crit Rev Food Sci Nutr 2023; 64:7959-7980. [PMID: 37009832 DOI: 10.1080/10408398.2023.2194419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.
Collapse
Affiliation(s)
- Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qi-Ting Fang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Lin Zeng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Ru-Yi Liu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Lu Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jun-Jie Dong
- Research and Development Department, Zhejiang Camel Transworld (Organic Food) Co., Ltd, Hangzhou, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Zhong-Hua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|