1
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
3
|
Raundal K, Kharat A, Sanap A, Kheur S, Potdar P, Sakhare S, Bhonde R. Decellularized leaf-based biomaterial supports osteogenic differentiation of dental pulp mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00937-9. [PMID: 38935255 DOI: 10.1007/s11626-024-00937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Decellularized tissues are an attractive scaffolds for 3D tissue engineering. Decellularized animal tissues have certain limitations such as the availability of tissue, high costs and ethical concerns related to the use of animal sources. Plant-based tissue decellularized scaffolds could be a better option to overcome the problem. The leaves of different plants offer a unique opportunity for the development of tissue-specific scaffolds, depending on the reticulate or parallel veination. Herein, we decellularized spinach leaves and employed these for the propagation and osteogenic differentiation of dental pulp stem cells (DPSCs). DPSCs were characterized by using mesenchymal stem cell surface markers CD90, CD105 and CD73 and CD34, CD45 and HLA-DR using flow cytometry. Spinach leaves were decellularized using ethanol, NaOH and HCL. Cytotoxicity of spinach leaf scaffolds were analysed by MTT assay. Decellularized spinach leaves supported dental pulp stem cell adhesion, proliferation and osteogenic differentiation. Our data demonstrate that the decellularized spinach cellulose scaffolds can stimulate the growth, proliferation and osteogenic differentiation of DPSCs. In this study, we showed the versatile nature of decellularized plant leaves as a biological scaffold and their potential for bone regeneration in vitro.
Collapse
Affiliation(s)
- Kaustubh Raundal
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimri, Pune, India.
| |
Collapse
|
4
|
Popescu RC, Calin BS, Tanasa E, Vasile E, Mihailescu M, Paun IA. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization. Front Bioeng Biotechnol 2023; 11:1273277. [PMID: 38170069 PMCID: PMC10758856 DOI: 10.3389/fbioe.2023.1273277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politehnica University from Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, Magurele, Romania
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
| | - Eugenia Tanasa
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Mona Mihailescu
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| |
Collapse
|