1
|
Moaraf S, Heiblum R, Scharf I, Hefetz A, Okuliarová M, Zeman M, Barnea A. Counteracting the effects of artificial light at night: The role of melatonin in brain plasticity and nighttime activity in a songbird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179251. [PMID: 40174249 DOI: 10.1016/j.scitotenv.2025.179251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Melatonin is important for synchronizing biological rhythms and regulating behavioral, physiological, and neurobiological circadian processes. Therefore, it is a good candidate for investigating the consequences of artificial light at night (ALAN), which is a major global pollutant and reduces nighttime melatonin levels. The negative effects of ALAN on health and biodiversity are thoroughly studied, however less is known about its effects on adult brain plasticity (ABP). This study investigated the role of melatonin in mediating the effects of ALAN on ABP and behavior in zebra finches (Taeniopygia guttata). Birds were exposed to control (dark nights) or ALAN (5 lx) conditions and treated with melatonin via a skin cream. We measured nighttime locomotor activity (NMA), plasma melatonin levels, and ABP parameters: cell proliferation in the ventricular zone, neuronal recruitment, apoptosis, and total neuronal densities in three forebrain regions: nidopallium caudale (NC), medial striatum (MSt), and hippocampus (HC). ALAN alone reduced nighttime melatonin, increased NMA, and increased cell proliferation, neuronal recruitment, and apoptosis in the MSt and NC but not the HC, which appeared more resilient. However, when melatonin treatments were combined with ALAN, melatonin generally counteracted the effects of ALAN on NMA and ABP, except for the HC, which remained more resilient even under the combined treatments. Our findings suggest that melatonin can counteract ALAN-induced changes in ABP and behavior. Further research (e.g. with wild species and lifelong ALAN-exposed birds) is needed to evaluate these results in an ecological context, which can be used for nature conservation efforts.
Collapse
Affiliation(s)
- Stan Moaraf
- Department of Natural Sciences, The Open University of Israel, Ra'anana 43107, Israel; School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Rachel Heiblum
- Department of Natural Sciences, The Open University of Israel, Ra'anana 43107, Israel
| | - Inon Scharf
- School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Abraham Hefetz
- School of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Monika Okuliarová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovak Republic
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovak Republic
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, Ra'anana 43107, Israel.
| |
Collapse
|
2
|
González-González S, Gutiérrez-Pérez M, Guzmán-Ruiz MA, Espitia-Bautista E, Pavón RM, Estrada-Rodríguez KP, Díaz-Infante R. A, Guadarrama Gándara CG, Escobar C, Guerrero-Vargas NN. Maternal exposure to dim light at night induces behavioral alterations in the adolescent and adult offspring Wistar rat. Front Physiol 2025; 15:1520160. [PMID: 39839527 PMCID: PMC11747224 DOI: 10.3389/fphys.2024.1520160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Access to electric light has exposed living organisms to varying intensities of light throughout the 24 h day. Dim light at night (DLAN) is an inappropriate signal for the biological clock, which is responsible for the circadian organization of physiology. During the gestational period, physiological adaptations occur to ensure a successful pregnancy and optimal fetal development. Environmental maternal conditions, such as disruptions of maternal circadian rhythms, could negatively affect offspring health. We have previously demonstrated that exposure of female Wistar rats to DLAN results in circadian, metabolic, and behavioral alterations. A relevant behavior during adolescence is social play, primarily regulated by the nucleus accumbens (NAc) which is crucial for the proper performance of important behaviors in adulthood. Throughout development, microglia are responsible for the remodeling of diverse brain regions via synaptic pruning. During adolescence, this process occurs within the NAc, where immune-mediated remodeling directly impacts social play behavior. Methods This study investigated the effects of maternal exposure to DLAN or a light-dark cycle (LD) before (5 weeks) and during the gestational period (21-23 days) on the metabolism and behavior of offspring in adolescence and adulthood. Body mass was measured every 5 days from postnatal day 1 (PN1) to PN25 and every 10 days from PN40 to PN90; food consumption was monitored weekly from PN40 to PN90. Social play behavior was evaluated at PN40. The quantification and morphology of microglia in the NAc were measured on PN30. An open field test was conducted at PN60, and anhedonia test was assessed at PN90. Results and discussion Male and female offspring from mothers exposed to DLAN showed increased body mass gain at PN25. DLAN male offspring had lower food consumption, while DLAN females exhibited increased food consumption. In social play behavior, no differences were found between DLAN and LD female offspring. In contrast, DLAN male offspring exhibited a significant decrease in social play behavior compared to LD animals, which was associated with higher numbers of microglia in the NAc that had more ramified morphology. Importantly, at PN90, DLAN offspring presented increased anxiety-like behaviors. These results demonstrate that DLAN exposure induces intergenerational behavioral alterations that persist until adulthood.
Collapse
Affiliation(s)
- Shellye González-González
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Mara A. Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Rosa María Pavón
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla P. Estrada-Rodríguez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalí N. Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Zou HX, Hu LW, Zhang Z, Heazell AEP, Wang X, Yue W, Lu XF, Liu XY, Zhang S, Wang LB, Zhang E, Su S, Gao S, Xie S, Liu J, Zhang Y, Liu R, Dong GH, Yin C. Outdoor light at night exposure was associated with hypothyroidism in pregnant women: A national study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178017. [PMID: 39693646 DOI: 10.1016/j.scitotenv.2024.178017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Evidence on the influence of outdoor artificial light at night (ALAN) on hypothyroidism in pregnant women is scarce. We aimed to investigate the association between outdoor ALAN exposure and hypothyroidism in pregnancy. METHODS 81,820 pregnant women from the China Birth Cohort Study (CBCS) were analyzed, which recruited from 18 provinces and autonomous regions in China between February 2018 and December 2020. Hypothyroidism was defined based on clinical diagnosis by physicians. Outdoor ALAN exposure (nW/cm2/sr) within 1500 m was estimated using VIIRS/DNB satellite data based on the participants' residential address. The Outdoor ALAN was divided in quartiles, with the lowest quartile (Q1) serving as the reference group. Generalized linear mixed models were employed to estimate the association between ALAN exposure and hypothyroidism. RESULTS Among the 81,120 pregnant women, 3902 (4.77 %) were diagnosed hypothyroidism. Pregnant women with hypothyroidism had significantly higher median (IQR, interquartile range) outdoor ALAN levels during pregnancy compared to those without hypothyroidism (30.97 (18.15) vs. 29.14 (20.21) nW/cm2/sr, p < 0.01). After adjusting for covariates, we found that each quartile increment of outdoor ALAN exposure was associated with an adjusted Odds Ratio (aOR of 1.15 (95 % Confidence Interval [95 % CI]: 1.03-1.27), 1.15 (1.05-1.28), and 1.12 (1.00-1.25) for hypothyroidism, respectively from Q2 to Q4. Additionally, stratified analyses revealed that pre-pregnancy BMI was a significant modifier in the association between outdoor ALAN and hypothyroidism in pregnancy, with stronger effects observed among those who were overweight before pregnancy (1.21 [95 % CI, 1.05-1.39] vs. 1.03 [95 % CI, 0.97-1.10], p for interaction = 0.01). CONCLUSIONS Outdoor ALAN exposure is positively associated with hypothyroidism in pregnancy. To benefit maternal and infant health and well-being, recommendations for mitigating ALAN pollution and effective measures to avoid excessive light exposure should be developed.
Collapse
Affiliation(s)
- Hong-Xing Zou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Xueran Wang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Wentao Yue
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Xiao-Fan Lu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Yi Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuo Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Le-Bing Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Enjie Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Shaofei Su
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Shen Gao
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Shuanghua Xie
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Jianhui Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Yue Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| |
Collapse
|
4
|
Speksnijder EM, Bisschop PH, Siegelaar SE, Stenvers DJ, Kalsbeek A. Circadian desynchrony and glucose metabolism. J Pineal Res 2024; 76:e12956. [PMID: 38695262 DOI: 10.1111/jpi.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Esther M Speksnijder
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Sarah E Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sun Q, Ye F, Liu J, Yang Y, Hui Q, Chen Y, Liu D, Guo J, Wang C, Lv D, Tang L, Zhang Q. Outdoor artificial light at night exposure and gestational diabetes mellitus: a case-control study. Front Public Health 2024; 12:1396198. [PMID: 38660366 PMCID: PMC11039930 DOI: 10.3389/fpubh.2024.1396198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Objective This study aims to explore the association between outdoor artificial light at night (ALAN) exposure and gestational diabetes mellitus (GDM). Methods This study is a retrospective case-control study. According with quantiles, ALAN has been classified into three categories (Q1-Q3). GDM was diagnosed through oral glucose tolerance tests. Conditional logistic regression models were used to evaluate the association between ALAN exposure and GDM risk. The odds ratio (OR) with 95% confidence interval (CI) was used to assess the association. Restricted cubic spline analysis (RCS) was utilized to investigate the no liner association between ALAN and GDM. Results A total of 5,720 participants were included, comprising 1,430 individuals with GDM and 4,290 matched controls. Pregnant women exposed to higher levels of ALAN during the first trimester exhibited an elevated risk of GDM compared to those with lower exposure levels (Q2 OR = 1.39, 95% CI 1.20-1.63, p < 0.001); (Q3 OR = 1.70, 95% CI 1.44-2.00, p < 0.001). Similarly, elevated ALAN exposure during the second trimester also conferred an increased risk of GDM (second trimester: Q2 OR = 1.70, 95% CI 1.45-1.98, p < 0.001; Q3 OR = 2.08, 95% CI 1.77-2.44, p < 0.001). RCS showed a nonlinear association between ALAN exposure and GDM risk in second trimester pregnancy, with a threshold value of 4.235. Conclusion Outdoor ALAN exposure during pregnancy is associated with an increased risk of GDM.
Collapse
Affiliation(s)
- Qi Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Precision and Smart Imaging Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fang Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Hui
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanmei Chen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Die Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianning Guo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Lv
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Tang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Helm B, Greives T, Zeman M. Endocrine-circadian interactions in birds: implications when nights are no longer dark. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220514. [PMID: 38310930 PMCID: PMC10838642 DOI: 10.1098/rstb.2022.0514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 02/06/2024] Open
Abstract
Biological clocks are evolved time-keeping systems by which organisms rhythmically coordinate physiology within the body, and align it with rhythms in their environment. Clocks are highly sensitive to light and are at the interface of several major endocrine pathways. Worryingly, exposure to artificial-light-at-night (ALAN) is rapidly increasing in ever more extensive parts of the world, with likely impact on wild organisms mediated by endocrine-circadian pathways. In this overview, we first give a broad-brush introduction to biological rhythms. Then, we outline interactions between the avian clock, endocrine pathways, and environmental and internal modifiers. The main focus of this review is on the circadian hormone, melatonin. We summarize information from avian field and laboratory studies on melatonin and its relationships with behaviour and physiology, including often neglected developmental aspects. When exposed to ALAN, birds are highly vulnerable to disruption of behavioural rhythms and of physiological systems under rhythmic control. Several studies suggest that melatonin is likely a key mediator for a broad range of effects. We encourage further observational and experimental studies of ALAN impact on melatonin, across the full functional range of this versatile signalling molecule, as well as on other candidate compounds at the endocrine-circadian interface. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Barbara Helm
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, 6204 Sempach, Switzerland
| | - Timothy Greives
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava SK 84215, Slovakia
| |
Collapse
|
7
|
Molcan L, Babarikova K, Cvikova D, Kincelova N, Kubincova L, Mauer Sutovska H. Artificial light at night suppresses the day-night cardiovascular variability: evidence from humans and rats. Pflugers Arch 2024; 476:295-306. [PMID: 38177874 PMCID: PMC10847188 DOI: 10.1007/s00424-023-02901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the ability to anticipate stress.
Collapse
Affiliation(s)
- Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Katarina Babarikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Diana Cvikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Natalia Kincelova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Lenka Kubincova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Hana Mauer Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia.
| |
Collapse
|
8
|
Tidau S, Brough FT, Gimenez L, Jenkins SR, Davies TW. Impacts of artificial light at night on the early life history of two ecosystem engineers. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220363. [PMID: 37899009 PMCID: PMC10613533 DOI: 10.1098/rstb.2022.0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 10/31/2023] Open
Abstract
Sessile marine invertebrates play a vital role as ecosystem engineers and in benthic-pelagic coupling. Most benthic fauna develop through larval stages and the importance of natural light cycles for larval biology and ecology is long-established. Natural light-dark cycles regulate two of the largest ocean-scale processes that are fundamental to larvae's life cycle: the timing of broadcast spawning for successful fertilization and diel vertical migration for foraging and predator avoidance. Given the reliance on light and the ecological role of larvae, surprisingly little is known about the impacts of artificial light at night (ALAN) on the early life history of habitat-forming species. We quantified ALAN impacts on larval performance (survival, growth, development) of two cosmopolitan ecosystem engineers in temperate marine ecosystems, the mussel Mytilus edulis and the barnacle Austrominius modestus. Higher ALAN irradiance reduced survival in both species (57% and 13%, respectively). ALAN effects on development and growth were small overall, and different between species, time-points and parentage. Our results show that ALAN adversely affects larval survival and reiterates the importance of paternal influence on offspring performance. ALAN impacts on the early life stages of ecosystem engineering species have implications not only for population viability but also the ecological communities that these species support. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Fraser T. Brough
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Luis Gimenez
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Stuart R. Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Thomas W. Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
9
|
Sun Q, Yang Y, Liu J, Ye F, Chen Y, Liu D, Zhang Q. Association between exposure to outdoor artificial light at night and the risk of preterm birth. Front Public Health 2023; 11:1280790. [PMID: 38162621 PMCID: PMC10756648 DOI: 10.3389/fpubh.2023.1280790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background This study aimed to investigate the association between outdoor artificial light at night (ALAN) exposure during pregnancy and the risk of preterm birth (PTB). Methods A retrospective case-control study was conducted, and data were collected from pregnant women residing in Beijing, China. The level of ALAN exposure during pregnancy was estimated using remote sensing satellite data. Propensity score matching was utilized to match the control group. Logistic and multivariate linear regression were used to analyze the association between ALAN and the risk of PTB. The odds ratio (OR) and partial regression coefficient (β) with 95% confidence interval (CI) were utilized to assess the association. Results A total of 2,850 pregnant women were enrolled in this study. ALAN (nW/cm2/sr) exposure was higher in the PTB group than in the control group during first trimester (mean ± standard deviation: 25.30 ± 17.91 vs. 17.56 ± 14.74, p < 0.001) and second trimester (27.07 ± 18.10 vs. 21.93 ± 16.08, p < 0.001). A negative association was found between ALAN exposure and gestation day in the first (β = -0.151, 95%CI: -0.217 to -0.085, p < 0.001) and second trimesters (β = -0.077, 95%CI: -0.139 to -0.015, p = 0.015). ALAN was identified as a risk factor for PTB during the first trimester (OR = 1.032, 95%CI: 1.025-1.040, p < 0.001) and the second trimester (OR = 1.018, 95%CI: 1.011-1.025, p < 0.001), while no significant association was observed in the third trimester. Conclusion Our study suggesting that exposure to outdoor ALAN, especially during first and second trimester, was associated with the risk of PTB. These findings highlight the potential impact of ALAN on pregnancy health and offer new insights into the risk of PTB.
Collapse
Affiliation(s)
- Qi Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yang Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yuanmei Chen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Die Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Sangma JT, Trivedi AK. Light at night: effect on the daily clock, learning, memory, cognition, and expression of transcripts in different brain regions of rat. Photochem Photobiol Sci 2023; 22:2297-2314. [PMID: 37337065 DOI: 10.1007/s43630-023-00451-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The rapid increase in urbanization is altering the natural composition of the day-night light ratio. The light/dark cycle regulates animal learning, memory, and mood swings. A study was conducted to examine the effect of different quantity and quality of light at night on the daily clock, learning, memory, cognition, and expression of transcripts in key learning centers. Treatment was similar for experiments one to three. Rats were exposed for 30 days to 12 h light and 12 h dark with a night light of 2 lx (dLAN group), 250 lx (LL), or without night light (LD). In experiment one, after 28 days, blood samples were collected and 2 days later, animals were exposed to constant darkness. In experiment two, after 30 days of treatment, animals were subjected to various tests involving learning, memory, and cognition. In experiment three, after 30 days of treatment, animals were sampled, and transcript levels of brain-derived neurotrophic factor, tyrosine kinase, Growth-Associated Protein 43, Neurogranin, microRNA-132, cAMP Response Element-Binding Protein, Glycogen synthase kinase-3β, and Tumor necrosis factor α were measured in hippocampus, thalamus, and cortex tissues. In experiment four, animals were exposed to night light of 0.019 W/m2 but of either red (640 nm), green (540 nm), or blue (450 nm) wavelength for 30 days, and similar tests were performed as mentioned in experiment 2. While in experiment five, after 30 days of respective wavelength treatments, all animals were sampled for gene expression studies. Our results show that exposure to dLAN and LL affects the daily clock as reflected by altered melatonin secretion and locomotor activity, compromises the learning, memory, and cognitive ability, and alterations in the expression levels of transcripts in the hypothalamus, cortex, and thalamus. The effect is night light intensity dependent. Further, blue light at night has less drastic effects than green and red light. These results could be of the potential use of framing the policies for the use of light at night.
Collapse
Affiliation(s)
- James T Sangma
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Amit K Trivedi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India.
| |
Collapse
|
11
|
Zeman M, Okuliarova M, Rumanova VS. Disturbances of Hormonal Circadian Rhythms by Light Pollution. Int J Mol Sci 2023; 24:ijms24087255. [PMID: 37108420 PMCID: PMC10138516 DOI: 10.3390/ijms24087255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The circadian rhythms evolved to anticipate and cope with cyclic changes in environmental conditions. This adaptive function is currently compromised by increasing levels of artificial light at night (ALAN), which can represent a risk for the development of diseases of civilisation. The causal links are not completely understood, and this featured review focuses on the chronodisruption of the neuroendocrine control of physiology and behaviour by dim ALAN. The published data indicate that low levels of ALAN (2-5 lux) can attenuate the molecular mechanisms generating circadian rhythms in the central oscillator, eliminate the rhythmic changes in dominant hormonal signals, such as melatonin, testosterone and vasopressin, and interfere with the circadian rhythm of the dominant glucocorticoid corticosterone in rodents. These changes are associated with a disturbed daily pattern of metabolic changes and behavioural rhythms in activity and food and water intake. The increasing levels of ALAN require the identification of the pathways mediating possible negative consequences on health to design effective mitigation strategies to eliminate or minimise the effects of light pollution.
Collapse
Affiliation(s)
- Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Monika Okuliarova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Valentina Sophia Rumanova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| |
Collapse
|