1
|
Ma L, Zhang Y, Xu J, Yu Y, Zhou P, Liu X, Guan H. Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers. Int J Mol Sci 2025; 26:3342. [PMID: 40244232 PMCID: PMC11989863 DOI: 10.3390/ijms26073342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
DNA methylation is a common endogenous chemical modification in eukaryotic DNA, primarily involving the covalent attachment of a methyl group to the fifth carbon of cytosine residues, leading to the formation of 5-methylcytosine (5mC). This epigenetic modification plays a crucial role in gene expression regulation and genomic stability maintenance in eukaryotic systems. Ionizing radiation (IR) has been shown to induce changes in global DNA methylation patterns, which exhibit significant temporal stability. This stability makes DNA methylation profiles promising candidates for radiation-specific biomarkers. This review systematically examines the impact of IR on genome-wide DNA methylation landscapes and evaluates their potential as molecular indicators of radiation exposure. Advancing the knowledge of radiation-induced epigenetic modifications in radiobiology contributes to a deeper understanding of IR-driven epigenetic reprogramming and facilitates the development of novel molecular tools for the early detection and quantitative risk assessment of radiation exposure.
Collapse
Affiliation(s)
- Lanfang Ma
- College of Life Sciences, Hebei University, Baoding 071002, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Yu Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
- College of Public Health, University of South China, 28 West Changsheng Road, Hengyang 421000, China
| | - Jie Xu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Yanan Yu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
- College of Public Health, University of South China, 28 West Changsheng Road, Hengyang 421000, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Xiuhua Liu
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Hua Guan
- College of Life Sciences, Hebei University, Baoding 071002, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| |
Collapse
|
2
|
Liu C, Shi J, Xing L, Yao B, Liu J, Wang Y, Fan J. Discovery and confirmation of crucial genes associated with radiation-induced heart disease. Int J Med Sci 2025; 22:1278-1291. [PMID: 40084244 PMCID: PMC11898860 DOI: 10.7150/ijms.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
Objective: Radiotherapy is an essential method for treating cancerous tumors, and the resultant radiation-induced heart disease (RIHD) has emerged as the leading non-cancerous cause of mortality among cancer survivors. However, the mechanisms of RIHD are still unknown, and specific biomarkers and effective treatment methods are needing to be found. Methods: Fourteen male C57BL/6J mice, each 8 weeks old, were randomly assigned into two groups: an experimental group (n = 7) and a control group (n = 7). The test group underwent irradiation with 30 Gy of 60Co γ-rays. To assess the acute and chronic damage to the myocardium caused by radiation, heart tissues were collected at one day and six weeks after irradiation for transcriptome sequencing, and H&E staining and immunohistochemical staining were done, respectively. Results: One day after radiation, the myocardial tissue showed a significant amount of inflammatory cell infiltration. Following a period of six weeks, there was an increase in hypertrophic cardiomyocytes and myocardial fibrosis. Additionally, we identified several genes (Cmpk2, Ifit3, Dhx58, Slc2a1, and Thbs1) that were strongly associated with RIHD. The expression of these genes in heart tissue was significantly upregulated after six weeks of radiation. Findings from the GO functional and KEGG pathway enrichment analysis, along with the hub gene function analysis, indicate that the mechanism behind RIHD might be linked to systemic inflammation and mitochondrial dysfunction. Conclusion: Acute radiation myocardial injury is characterized by inflammation, while chronic radiation myocardial injury is characterized by myocardial fibrosis. RIHD is linked to Cmpk2, Ifit3, Dhx58, Slc2a1, and Thbs1 genes through a mechanism that may cause systemic inflammation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chuanbin Liu
- Department of Emergency, the First Medical Center of PLA General Hospital, Beijing, China
- Western Medical Branch of PLA General Hospital, Beijing, China
| | - Jingqi Shi
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Lei Xing
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Binwei Yao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jing Liu
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yiru Wang
- Department of Ultrasound, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiao Fan
- Institute of Geriatrics, the Second Medical Centre & National Clinical Research Centre for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Cox OH, Seifuddin F, Guo J, Pirooznia M, Boersma GJ, Wang J, Tamashiro KL, Lee RS. Implementation of the Methyl-Seq platform to identify tissue- and sex-specific DNA methylation differences in the rat epigenome. Epigenetics 2024; 19:2393945. [PMID: 39306700 PMCID: PMC11418217 DOI: 10.1080/15592294.2024.2393945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenomic annotations for the rat lag far behind those of human and mouse, despite the rat's immense utility in pharmacological and behavioral studies and the need to understand their epigenetic mechanisms. We have designed a targeted-enrichment method followed by next-generation sequencing (Methyl-Seq) to identify DNA methylation (DNAm) signatures across the rat genome. The design reflected an attempt to create a more comprehensive investigation of the rat epigenome, as it included promoters, CpG islands, and island shores of all RefSeq genes. In this study, we implemented the rat Methyl-Seq platform and tested its ability to distinguish differentially methylated regions (DMRs) among three different tissue types, three distinct brain regions, and, in the hippocampus, between males and females. These comparisons yielded DNAm differences of differing magnitudes, many of which were independently validated by bisulfite pyrosequencing, including autosomal regions that were predicted to show the least degree of difference in DNAm between males and females. Quantitative reverse transcription PCR revealed that most genes associated with the DMRs showed tissue-, brain region-, and sex-specific differences in expression. In particular, we found evidence for sex-specific DNAm and expression differences at Tubb6, Lrrn2, Tex26, and Sox5l1, all of which play important roles in neurodevelopment and have been implicated in studies examining sex differences. Our results demonstrate the utility of the rat Methyl-Seq platform and suggest the presence of DNAm differences between the male and female hippocampus. The rat Methyl-Seq has the potential to provide epigenomic insights into pharmacological and behavioral studies performed in the rat.
Collapse
Affiliation(s)
- Olivia H. Cox
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Fayaz Seifuddin
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeffrey Guo
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mehdi Pirooznia
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gretha J. Boersma
- GGZ Drenthe Mental Health Institute, Department of Forensic Psychiatry, Assen, The Netherlands
| | - Josh Wang
- Agilent Technologies, Inc., Santa Clara, USA
| | - Kellie L.K. Tamashiro
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Richard S. Lee
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
4
|
Sallam M, Mysara M, Benotmane MA, Tamarat R, Santos SCR, Crijns APG, Spoor D, Van Nieuwerburgh F, Deforce D, Baatout S, Guns PJ, Aerts A, Ramadan R. Correction: Sallam et al. DNA Methylation Alterations in Fractionally Irradiated Rats and Breast Cancer Patients Receiving Radiotherapy. Int. J. Mol. Sci. 2022, 23, 16214. Int J Mol Sci 2023; 24:17590. [PMID: 38139464 PMCID: PMC10743583 DOI: 10.3390/ijms242417590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 12/24/2023] Open
Abstract
Radia Tamarat and Susana Constantino Rosa Santos were not included as authors in the original publication [...].
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Mohamed Mysara
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| | | | - Radia Tamarat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, 92260 Fontenay-aux-Roses, France
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Lisbon School of Medicine of the Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Anne P. G. Crijns
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Daan Spoor
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| | - Raghda Ramadan
- Radiobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| |
Collapse
|
5
|
Wołowiec A, Wołowiec Ł, Grześk G, Jaśniak A, Osiak J, Husejko J, Kozakiewicz M. The Role of Selected Epigenetic Pathways in Cardiovascular Diseases as a Potential Therapeutic Target. Int J Mol Sci 2023; 24:13723. [PMID: 37762023 PMCID: PMC10531432 DOI: 10.3390/ijms241813723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetics is a rapidly developing science that has gained a lot of interest in recent years due to the correlation between characteristic epigenetic marks and cardiovascular diseases (CVDs). Epigenetic modifications contribute to a change in gene expression while maintaining the DNA sequence. The analysis of these modifications provides a thorough insight into the cardiovascular system from its development to its further functioning. Epigenetics is strongly influenced by environmental factors, including known cardiovascular risk factors such as smoking, obesity, and low physical activity. Similarly, conditions affecting the local microenvironment of cells, such as chronic inflammation, worsen the prognosis in cardiovascular diseases and additionally induce further epigenetic modifications leading to the consolidation of unfavorable cardiovascular changes. A deeper understanding of epigenetics may provide an answer to the continuing strong clinical impact of cardiovascular diseases by improving diagnostic capabilities, personalized medical approaches and the development of targeted therapeutic interventions. The aim of the study was to present selected epigenetic pathways, their significance in cardiovascular diseases, and their potential as a therapeutic target in specific medical conditions.
Collapse
Affiliation(s)
- Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Albert Jaśniak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Jakub Husejko
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
6
|
Impey S, Pelz C, Riparip LK, Tafessu A, Fareh F, Zuloaga DG, Marzulla T, Stewart B, Rosi S, Turker MS, Raber J. Postsynaptic density radiation signature following space irradiation. Front Physiol 2023; 14:1215535. [PMID: 37440997 PMCID: PMC10334289 DOI: 10.3389/fphys.2023.1215535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The response of the brain to space radiation is an important concern for astronauts during space missions. Therefore, we assessed the response of the brain to 28Si ion irradiation (600 MeV/n), a heavy ion present in the space environment, on cognitive performance and whether the response is associated with altered DNA methylation in the hippocampus, a brain area important for cognitive performance. Methods: We determined the effects of 28Si ion irradiation on object recognition, 6-month-old mice irradiated with 28Si ions (600 MeV/n, 0.3, 0.6, and 0.9 Gy) and cognitively tested two weeks later. In addition, we determined if those effects were associated with alterations in hippocampal networks and/or hippocampal DNA methylation. Results: At 0.3 Gy, but not at 0.6 Gy or 0.9 Gy, 28Si ion irradiation impaired cognition that correlated with altered gene expression and 5 hmC profiles that mapped to specific gene ontology pathways. Comparing hippocampal DNA hydroxymethylation following proton, 56Fe ion, and 28Si ion irradiation revealed a general space radiation synaptic signature with 45 genes that are associated with profound phenotypes. The most significant categories were glutamatergic synapse and postsynaptic density. Discussion: The brain's response to space irradiation involves novel excitatory synapse and postsynaptic remodeling.
Collapse
Affiliation(s)
- Soren Impey
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
- Dow Neuroscience Laboratories, Department of Cell and Developmental Biology, Legacy Research Institute, Legacy Health Systems, Oregon Health and Science University, Portland, OR, United States
| | - Carl Pelz
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
| | - Lara-Kirstie Riparip
- Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, United States
| | - Amanuel Tafessu
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
| | - Fatema Fareh
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
| | - Damian G. Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Blair Stewart
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Susanna Rosi
- Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, United States
| | - Mitchell S. Turker
- Department of Molecular and Medical Genetics, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|