1
|
Zhou M, Hong J, Qiu X, Xiong Z, Liu X, Qin Z, Luo Z, Chen Q, Lin M, Min L, Yang X, Guo X, Xu B, Mao J. Serum-derived extracellular vesicles mediate acquired multidrug resistance of MCF-7 breast cancer cells induced by chemotherapeutic drugs. Biochem Pharmacol 2025; 237:116923. [PMID: 40194604 DOI: 10.1016/j.bcp.2025.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Multidrug resistance (MDR) in tumor cells presents a significant challenge in cancer therapy. This study investigates the role of serum-derived extracellular vesicles (EVs) in mediating MDR during chemotherapeutic exposure. The findings indicate that short- or long-term co-incubation of doxorubicin (Dox)-pretreated serum derived EVs (EVs(S-PT)) caused drug-sensitive MCF-7 breast cancer cells to develop a MDR phenotype. In addition, serum EVs contain a high concentration of unglycosylated P-glycoprotein (P-gp). Chemotherapy treatment of tumor patients or exposure to chemotherapeutic drugs in vitro activates serum glycosyltransferases, inducing glycosylation of EVs P-gp and giving it drug-pumping activity. Furthermore, damage caused by Dox to the vascular endothelial barrier facilitates the crossing of serum EVs into the tumor microenvironment. These EVs are then taken up by tumor cells, providing them with access to a significant quantity of glycosylated P-gp proteins that possess transporter activity and the ability to evade degradation by the ubiquitin proteasome system. The results indicate that EVs(S-PT) transfers glycosylated P-gp across the damaged vascular endothelial barrier into MCF-7 cells and that these glycosylated P-gp remain intracellular for a long period of time, inducing MDR in the cells. Our study highlights a novel mechanism of acquired MDR and provides a potential avenue for therapeutic interventions targeting the serum EVs pathway in cancer therapy.
Collapse
Affiliation(s)
- Mi Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahuan Hong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaofeng Qiu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zixian Xiong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyong Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhuan Qin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhesi Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mianjie Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ling Min
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiaorong Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, China.
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jianwen Mao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Liu J, Lv C, Aghayants S, Wang Y. MiR-15a-5p Knockdown up-Regulated ABCB1 Expression and Abated HNSCC Progression via the NF-κB Signaling Pathway. J INVEST SURG 2024; 37:2434096. [PMID: 39608783 DOI: 10.1080/08941939.2024.2434096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND The high invasion and heterogeneity of head and neck squamous cell carcinoma (HNSCC) commonly leads to poor clinical outcomes. Identification of reliable biomarkers for HNSCC is imperative. METHODS The targeted gene with the highest mutation was screened out in cBioPortal database, and the interactive microRNAs (miRNAs) were identified by miRNA-mRNA co-expression analysis. CCK-8 and transwell assays were used to explore the proliferative, migrative, and invasive behaviors of HNSCC cells. The dual-luciferase reporter assay and cell transfection experiment were conducted. The role of miR-15a-5p was investigated in the in vivo xenograft mouse model. RESULTS ATP binding cassette transporter 1 (ABCB1) had the highest mutation frequency and multiple mutation types in HNSCC, and the decreased ABCB1 was significantly related to better prognosis of HNSCC patients. MiR-15a-5p was a regulator for ABCB1, which was up-regulated after miR-15a-5p inhibition in vitro. Furthermore, the miR-15a-5p knockdown significantly suppressed HNSCC cell proliferation, migration, and invasion in vitro, and reduced the HNSCC tumor growth and migration capabilities in vivo, possibly through NF-κB signaling pathway. CONCLUSION Collectively, miR-15a-5p knockdown increased the ABCB1 level and abated the HNSCC progression via the NF-κB signaling pathway. ABCB1 and miR-15a-5p were underlying predictors for HNSCC therapeutic biomarkers.
Collapse
Affiliation(s)
- Jing Liu
- Outpatient Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoyang Lv
- Department of Burn Plastic Wound Repair Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingying Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Lentzas A, Venekamp N, Beijnen JH, van Tellingen O. Development and validation of an LC-MS/MS method for simultaneous quantification of eight drugs in plasma and brain: Application in a pharmacokinetic study in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124308. [PMID: 39288576 DOI: 10.1016/j.jchromb.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
A selective and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantitation of a cassette of 8 drugs, including docetaxel, erlotinib, loperamide, riluzole, vemurafenib, verapamil, elacridar and tariquidar. Stable isotopically labeled compounds were available for use as internal standards for all compounds, except for tariquidar for which we used elacridar-d4. Sample pre-treatment involved liquid-liquid extraction using tert-butyl-methyl ether as this resulted in good recovery and low ion suppression. Chromatographic separation was achieved using a Zorbax Extend C18 analytical column and a linear gradient from 20 % to 95 % methanol in 0.1 % (v/v) formic acid in water. MS/MS detection using multiple reaction monitoring was done in positive ionization mode. We validated this assay for human and mouse plasma and mouse brain homogenates. The calibration curves were linear over a range 1-200 nM for each drug in the mix, except for tariquidar probably due to the lack of a stable isotope labeled analog. The intra-day and inter-day accuracies were within the 85-115 % range for all compounds at low, medium and high concentrations in the three different matrices. Similarly, the precision for all compounds at three different concentration levels ranged below 15 %, with the exception of tariquidar in mouse plasma and brain homogenate and riluzole in brain homogenate. Pilot studies have confirmed that the method is suitable for the analysis of mouse plasma samples and brain homogenates following cassette dosing of this mixture in mice.
Collapse
Affiliation(s)
- Aristeidis Lentzas
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Nikkie Venekamp
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99 3584 CG Utrecht, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Chen L, Xu YX, Wang YS, Ren YY, Chen YM, Zheng C, Xie T, Jia YJ, Zhou JL. Integrative Chinese-Western medicine strategy to overcome docetaxel resistance in prostate cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118265. [PMID: 38677579 DOI: 10.1016/j.jep.2024.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi-Min Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Department of Traditional Chinese Medicines, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310052, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Ying-Jie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
5
|
Erb HHH, Polishchuk N, Stasyk O, Kahya U, Weigel MM, Dubrovska A. Glutamine Metabolism and Prostate Cancer. Cancers (Basel) 2024; 16:2871. [PMID: 39199642 PMCID: PMC11352381 DOI: 10.3390/cancers16162871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Glutamine (Gln) is a non-essential amino acid that is involved in the development and progression of several malignancies, including prostate cancer (PCa). While Gln is non-essential for non-malignant prostate epithelial cells, PCa cells become highly dependent on an exogenous source of Gln. The Gln metabolism in PCa is tightly controlled by well-described oncogenes such as MYC, AR, and mTOR. These oncogenes contribute to therapy resistance and progression to the aggressive castration-resistant PCa. Inhibition of Gln catabolism impedes PCa growth, survival, and tumor-initiating potential while sensitizing the cells to radiotherapy. Therefore, given its significant role in tumor growth, targeting Gln metabolism is a promising approach for developing new therapeutic strategies. Ongoing clinical trials evaluate the safety and efficacy of Gln catabolism inhibitors in combination with conventional and targeted therapies in patients with various solid tumors, including PCa. Further understanding of how PCa cells metabolically interact with their microenvironment will facilitate the clinical translation of Gln inhibitors and help improve therapeutic outcomes. This review focuses on the role of Gln in PCa progression and therapy resistance and provides insights into current clinical trials.
Collapse
Affiliation(s)
- Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Nikita Polishchuk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Uğur Kahya
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Matthias M. Weigel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01309 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
6
|
Erdmann K, Distler F, Gräfe S, Kwe J, Erb HHH, Fuessel S, Pahernik S, Thomas C, Borkowetz A. Transcript Markers from Urinary Extracellular Vesicles for Predicting Risk Reclassification of Prostate Cancer Patients on Active Surveillance. Cancers (Basel) 2024; 16:2453. [PMID: 39001515 PMCID: PMC11240337 DOI: 10.3390/cancers16132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Serum prostate-specific antigen (PSA), its derivatives, and magnetic resonance tomography (MRI) lack sufficient specificity and sensitivity for the prediction of risk reclassification of prostate cancer (PCa) patients on active surveillance (AS). We investigated selected transcripts in urinary extracellular vesicles (uEV) from PCa patients on AS to predict PCa risk reclassification (defined by ISUP 1 with PSA > 10 ng/mL or ISUP 2-5 with any PSA level) in control biopsy. Before the control biopsy, urine samples were prospectively collected from 72 patients, of whom 43% were reclassified during AS. Following RNA isolation from uEV, multiplexed reverse transcription, and pre-amplification, 29 PCa-associated transcripts were quantified by quantitative PCR. The predictive ability of the transcripts to indicate PCa risk reclassification was assessed by receiver operating characteristic (ROC) curve analyses via calculation of the area under the curve (AUC) and was then compared to clinical parameters followed by multivariate regression analysis. ROC curve analyses revealed a predictive potential for AMACR, HPN, MALAT1, PCA3, and PCAT29 (AUC = 0.614-0.655, p < 0.1). PSA, PSA density, PSA velocity, and MRI maxPI-RADS showed AUC values of 0.681-0.747 (p < 0.05), with accuracies for indicating a PCa risk reclassification of 64-68%. A model including AMACR, MALAT1, PCAT29, PSA density, and MRI maxPI-RADS resulted in an AUC of 0.867 (p < 0.001) with a sensitivity, specificity, and accuracy of 87%, 83%, and 85%, respectively, thus surpassing the predictive power of the individual markers. These findings highlight the potential of uEV transcripts in combination with clinical parameters as monitoring markers during the AS of PCa.
Collapse
Affiliation(s)
- Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florian Distler
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Sebastian Gräfe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Jeremy Kwe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Pahernik
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Beier AMK, Ebersbach C, Siciliano T, Scholze J, Hofmann J, Hönscheid P, Baretton GB, Woods K, Guezguez B, Dubrovska A, Markowitsch SD, Thomas C, Puhr M, Erb HHH. Targeting the glutamine metabolism to suppress cell proliferation in mesenchymal docetaxel-resistant prostate cancer. Oncogene 2024; 43:2038-2050. [PMID: 38750263 PMCID: PMC11196217 DOI: 10.1038/s41388-024-03059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024]
Abstract
Docetaxel (DX) serves as a palliative treatment option for metastatic prostate cancer (PCa). Despite initial remission, acquired DX resistance is inevitable. The mechanisms behind DX resistance have not yet been deciphered, but a mesenchymal phenotype is associated with DX resistance. Mesenchymal phenotypes have been linked to metabolic rewiring, obtaining most ATP production by oxidative phosphorylation (OXPHOS) powered substantially by glutamine (Gln). Likewise, Gln is known to play an essential role in modulating bioenergetic, redox homeostasis and autophagy. Herein, investigations of Gln deprivation on DX-sensitive and -resistant (DR) PCa cells revealed that the DR cell sub-lines were susceptible to Gln deprivation. Mechanistically, Gln deprivation reduced OXPHOS and ATP levels, causing a disturbance in cell cycle progression. Genetic and chemical inhibition of the Gln-metabolism key protein GLS1 could validate the Gln deprivation results, thereby representing a valid therapeutic target. Moreover, immunohistological investigation of GLS1 revealed a high-expressing GLS1 subgroup post-docetaxel failure, exhibiting low overall survival. This subgroup presents an intriguing opportunity for targeted therapy focusing on glutamine metabolism. Thus, these findings highlight a possible clinical rationale for the chemical inhibition of GLS1 as a therapeutic strategy to target mesenchymal DR PCa cells, thereby delaying accelerated tumour progression.
Collapse
Affiliation(s)
| | - Celina Ebersbach
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Tiziana Siciliano
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Jana Scholze
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Jörg Hofmann
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Pia Hönscheid
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Kevin Woods
- IIIrd Department of Medicine - Hematology & Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Borhane Guezguez
- IIIrd Department of Medicine - Hematology & Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Dresden, Germany
| | - Sascha D Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Martin Puhr
- Medical University of Innsbruck, Department of Urology, 6020, Innsbruck, Austria
| | - Holger H H Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Sun Y, Wu T, Gu J. An emerging role of N-glycosylation in cancer chemoresistance. Carbohydr Res 2024; 539:109107. [PMID: 38613897 DOI: 10.1016/j.carres.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Chemoresistance poses a significant obstacle in the effective treatment of cancer, limiting the success of chemotherapy regimens. N-glycosylation, the most important post-translational modification (PTM), plays multifaceted roles in the intricate landscape of cancer progression, particularly drug resistance in cancer cells. This review explores the complex relationship between N-glycosylation and chemoresistance in cancer. Altered glycosylation patterns have been proven to impact drug efflux mechanisms in cancer cells, which can further influence the intracellular concentration of chemotherapy drugs. Moreover, N-glycosylation also plays a regulatory role in cell signaling pathways and apoptosis regulators, continuously affecting the stemness and survival of cancer cells under the selective pressure of chemotherapy. Additionally, the impact of the tumor microenvironment on glycosylation patterns adds complexity to this interplay. This review discusses current research findings, challenges, and future directions based on the roles of N-glycosylation in cancer chemoresistance, emphasizing the potential for targeted therapeutic interventions to enhance the effectiveness of chemotherapy and improve patient outcomes.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
9
|
Gumenku L, Sekhoacha M, Abrahams B, Mashele S, Shoko A, Erukainure OL. Genetic Signatures for Distinguishing Chemo-Sensitive from Chemo-Resistant Responders in Prostate Cancer Patients. Curr Issues Mol Biol 2024; 46:2263-2277. [PMID: 38534761 DOI: 10.3390/cimb46030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Prostate cancer remains a significant public health concern in sub-Saharan Africa, particularly impacting South Africa with high mortality rates. Despite many years of extensive research and significant financial expenditure, there has yet to be a definitive solution to prostate cancer. It is not just individuals who vary in their response to treatment, but even different nodules within the same tumor exhibit unique transcriptome patterns. These distinctions extend beyond mere differences in gene expression levels to encompass the control and networking of individual genes. Escalating chemotherapy resistance in prostate cancer patients has prompted increased research into its underlying mechanisms. The heterogeneous nature of transcriptomic organization among men makes the pursuit of universal biomarkers and one-size-fits-all treatments impractical. This study delves into the expression of drug resistance-associated genes, ABCB1 and CYP1B1, in cancer cells. Employing bioinformatics, we explored the molecular pathways and cascades linked to drug resistance following upregulation of these genes. Samples were obtained from archived prostate cancer patient specimens through pre-treatment biopsies of two categories: good vs. poor responders, with cDNAs synthesized from isolated RNAs subjected to qPCR analysis. The results revealed increased ABCB1 and CYP1B1 expression in tumor samples of the poor responders. Gene enrichment and network analysis associated ABCB1 with ABC transporters and LncRNA-mediated therapeutic resistance (WP3672), while CYP1B1 was linked to ovarian steroidogenesis, tryptophan metabolism, steroid hormone biosynthesis, benzo(a)pyrene metabolism, the sulindac metabolic pathway, and the estrogen receptor pathway, which are associated with drug resistance. Both ABCB1 and CYP1B1 correlated with microRNAs in cancer and the Nuclear Receptors Meta-Pathway. STRING analysis predicted protein-protein interactions of ABCB1 and CYP1B1 with Glutathione S-transferase Pi, Catechol O-methyltransferase, UDP-glucuronosyltransferase 1-6, Leucine-rich Transmembrane and O-methyltransferase (LRTOMT), and Epoxide hydrolase 1, with scores of 0.973, 0.971, 0.966, 0.966, and 0.966, respectively. Furthermore, molecular docking analysis of the chemotherapy drug, docetaxel, with CYP1B1 and ABCB1 revealed robust molecular interactions, with binding energies of -20.37 and -15.25 Kcal/mol, respectively. These findings underscore the susceptibility of cancer patients to drug resistance due to increased ABCB1 and CYP1B1 expression in tumor samples from patients in the poor-responders category that affects associated molecular pathways. The potent molecular interactions of ABCB1 and CYP1B1 with docetaxel further emphasize the potential basis for chemotherapy resistance.
Collapse
Affiliation(s)
- Lemohang Gumenku
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Beynon Abrahams
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Aubrey Shoko
- Centre for Proteomics and Genomics Research, Cape Town 7925, South Africa
| | - Ochuko L Erukainure
- Laser Research Center, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
10
|
Cevatemre B, Bulut I, Dedeoglu B, Isiklar A, Syed H, Bayram OY, Bagci-Onder T, Acilan C. Exploiting epigenetic targets to overcome taxane resistance in prostate cancer. Cell Death Dis 2024; 15:132. [PMID: 38346967 PMCID: PMC10861560 DOI: 10.1038/s41419-024-06422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
The development of taxane resistance remains a major challenge for castration resistant prostate cancer (CR-PCa), despite the effectiveness of taxanes in prolonging patient survival. To uncover novel targets, we performed an epigenetic drug screen on taxane (docetaxel and cabazitaxel) resistant CR-PCa cells. We identified BRPF reader proteins, along with several epigenetic groups (CBP/p300, Menin-MLL, PRMT5 and SIRT1) that act as targets effectively reversing the resistance mediated by ABCB1. Targeting BRPFs specifically resulted in the resensitization of resistant cells, while no such effect was observed on the sensitive compartment. These cells were successfully arrested at the G2/M phase of cell cycle and underwent apoptosis upon BRPF inhibition, confirming the restoration of taxane susceptibility. Pharmacological inhibition of BRPFs reduced ABCB1 activity, indicating that BRPFs may be involved in an efflux-related mechanism. Indeed, ChIP-qPCR analysis confirmed binding of BRPF1 to the ABCB1 promoter suggesting direct regulation of the ABCB1 gene at the transcriptional level. RNA-seq analysis revealed that BRPF1 knockdown affects the genes enriched in mTORC1 and UPR signaling pathways, revealing potential mechanisms underlying its functional impact, which is further supported by the enhancement of taxane response through the combined inhibition of ABCB1 and mTOR pathways, providing evidence for the involvement of multiple BRPF1-regulated pathways. Beyond clinical attributes (Gleason score, tumor stage, therapy outcome, recurrence), metastatic PCa databases further supported the significance of BRPF1 in taxane resistance, as evidenced by its upregulation in taxane-exposed PCa patients.
Collapse
Affiliation(s)
- Buse Cevatemre
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ipek Bulut
- Koc University Graduate School of Health Sciences, Istanbul, Turkey
| | - Beyza Dedeoglu
- Koc University Graduate School of Science and Engineering, Istanbul, Turkey
| | - Arda Isiklar
- Koc University Graduate School of Health Sciences, Istanbul, Turkey
| | - Hamzah Syed
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
- Koc University School of Medicine, Sariyer, Turkey
| | | | - Tugba Bagci-Onder
- Koc University Research Center for Translational Medicine, Istanbul, Turkey
- Koc University School of Medicine, Sariyer, Turkey
| | - Ceyda Acilan
- Koc University Research Center for Translational Medicine, Istanbul, Turkey.
- Koc University School of Medicine, Sariyer, Turkey.
| |
Collapse
|
11
|
Wang J, Ben-David R, Mehrazin R, Yang W, Tewari AK, Kyprianou N. Novel signatures of prostate cancer progression and therapeutic resistance. Expert Opin Ther Targets 2023; 27:1195-1206. [PMID: 38108262 DOI: 10.1080/14728222.2023.2293757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The extensive heterogeneity of prostate cancer (PCa) and multilayered complexity of progression to castration-resistant prostate cancer (CRPC) have contributed to the challenges of accurately monitoring advanced disease. Profiling of the tumor microenvironment with large-scale transcriptomic studies have identified gene signatures that predict biochemical recurrence, lymph node invasion, metastases, and development of therapeutic resistance through critical determinants driving CRPC. AREAS COVERED This review encompasses understanding of the role of different molecular determinants of PCa progression to lethal disease including the phenotypic dynamic of cell plasticity, EMT-MET interconversion, and signaling-pathways driving PCa cells to advance and metastasize. The value of liquid biopsies encompassing circulating tumor cells and extracellular vesicles to detect disease progression and emergence of therapeutic resistance in patients progressing to lethal disease is discussed. Relevant literature was added from PubMed portal. EXPERT OPINION Despite progress in the tumor-targeted therapeutics and biomarker discovery, distant metastasis and therapeutic resistance remain the major cause of mortality in patients with advanced CRPC. No single signature can encompass the tremendous phenotypic and genomic heterogeneity of PCa, but rather multi-threaded omics-derived and phenotypic markers tailored and validated into a multimodal signature.
Collapse
Affiliation(s)
- Jason Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Yang
- Department of Pathology, Stony Brook University, New York, NY, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|