1
|
Du J, Yang Y, Rao J, Ma X, Tang S, Liu J, Liu Y, Liu S, Li G, Liang S, Gao Y. Resident Macrophages in the Cervical Sympathetic Ganglia Participate in P2Y12 Receptor Mediated Diabetic Cardiac Autonomic Neuropathy. Mol Neurobiol 2025:10.1007/s12035-025-04883-9. [PMID: 40146499 DOI: 10.1007/s12035-025-04883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Diabetic cardiac autonomic neuropathy (DCAN) represents a significant and prevalent complication of diabetes. Further research is required to ascertain the role of the P2Y12 receptor, which is expressed on macrophages and satellite glial cells (SGCs), in the pathophysiology of DCAN. The objective of this study was to ascertain whether resident macrophages in the superior cervical ganglion (SCG) are involved in the pathological changes associated with DCAN, which are mediated by the P2Y12 receptor in satellite glial cells (SGCs). The findings showed that DCAN rats had higher sympathetic nerve discharge activity than the control group. Furthermore, the expression of P2Y12 receptor, glial fibrillary acidic protein (GFAP), macrophage-like targets (colony-stimulating factor 1 receptor (CSF1R), colony-stimulating factor 1 (CSF1)), and interleukin-34 (IL-34) in SCG among DCAN rats was clearly elevated. Moreover, co-expression levels of NeuN and CSF1 in neurons, P2Y12 and GFAP as well as P2Y12 and IBA-1 in SCGs were increased. However, treatment with P2Y12 shRNA led to significant reductions in all above parameters. The action mechanism may involve reducing the expression of P2Y12 receptors in macrophages and SGCs, decreasing the expression of CSF1 in SCG neurons to weaken the CSF1-CSF1R signal, inhibiting the activation of macrophages and SGCs, and reducing the release of inflammatory factors. This ultimately alleviated abnormal neuronal excitation in SCG and maintaining balance in cardiac autonomic nervous activity. Therefore, targeting the P2Y12 receptor to disrupt the resident macrophages participate in pathological changes, may be an effective approach for improving DCAN.
Collapse
Affiliation(s)
- Junpei Du
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxin Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jingan Rao
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoqian Ma
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shanshan Tang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jian Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yeqing Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shipan Liu
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Guodong Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shangdong Liang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Yun Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Zhang H, Ding X, Qiu Y, Xie M, Wang H, Li T, Bao H, Huang S, Xiong Y, Tang X. Preventive effect of imperatorin against doxorubicin-induced cardiotoxicity through suppression of NLRP3 inflammasome activation. J Nat Med 2025; 79:95-106. [PMID: 39436583 DOI: 10.1007/s11418-024-01850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1β and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, pro‑caspase‑1, caspase‑1 p20, pro‑IL‑1β and IL‑1β in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1β and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 μg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiaoyun Ding
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yumei Qiu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Mengdie Xie
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hu Wang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Tingting Li
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Huiyun Bao
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Si Huang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yinhua Xiong
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China
| | - Xilan Tang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China.
| |
Collapse
|
3
|
Lei Q, Jiang Z, Shao Y, Liu X, Li X. Stellate ganglion, inflammation, and arrhythmias: a new perspective on neuroimmune regulation. Front Cardiovasc Med 2024; 11:1453127. [PMID: 39328238 PMCID: PMC11424448 DOI: 10.3389/fcvm.2024.1453127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Current research on the stellate ganglion (SG) has shifted from merely understanding its role as a collection of neurons to recognizing its importance in immune regulation. As part of the autonomic nervous system (ANS), the SG plays a crucial role in regulating cardiovascular function, particularly cardiac sympathetic nerve activity. Abnormal SG function can lead to disordered cardiac electrical activity, which in turn affects heart rhythm stability. Studies have shown that excessive activity of the SG is closely related to the occurrence of arrhythmias, especially in the context of inflammation. Abnormal activity of the SG may trigger excessive excitation of the sympathetic nervous system (SNS) through neuroimmune mechanisms, thereby increasing the risk of arrhythmias. Simultaneously, the inflammatory response of the SG further aggravates this process, forming a vicious cycle. However, the causal relationship between SG, inflammation, and arrhythmias has not yet been fully clarified. Therefore, this article deeply explores the key role of the SG in arrhythmias and its complex relationship with inflammation, providing relevant clinical evidence. It indicates that interventions targeting SG function and inflammatory responses have potential in preventing and treating inflammation-related arrhythmias, offering a new perspective for cardiovascular disease treatment strategies.
Collapse
Affiliation(s)
- Qiulian Lei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zefei Jiang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Shao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinghong Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoping Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Kundu S, Ghosh A, Yadav KS, Mugale MN, Sahu BD. Imperatorin ameliorates kidney injury in diabetic mice by regulating the TGF-β/Smad2/3 signaling axis, epithelial-to-mesenchymal transition, and renal inflammation. Eur J Pharmacol 2024; 963:176250. [PMID: 38092315 DOI: 10.1016/j.ejphar.2023.176250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Diabetic nephropathy (DN) is a serious concern in patients with diabetes mellitus. Prolonged hyperglycemia induces oxidative damage, chronic inflammation, and build-up of extracellular matrix (ECM) components in the renal cells, leading to kidney structural and functional changes. Imperatorin (IMP) is a naturally occurring furanocoumarin derivative with proven antioxidative and anti-inflammatory properties. We investigated whether IMP could improve DN and employed high glucose (HG)-induced HK-2 cells and high-fat diet-fed streptozotocin (HFD/STZ)-generated DN experimental model in C57BL/6 mice. In vitro, IMP effectively reduced the HG-activated reactive oxygen species generation, disturbance in the mitochondrial membrane potential (MMP) and epithelial-to-mesenchymal transition (EMT)-related markers, and the transforming growth factor (TGF)-β and collagen 1 expression in HK-2 cells. In vivo, we found an elevation of serum creatinine, kidney histology alterations, and collagen build-up in the kidneys of the DN control group. Also, we found an altered expression of EMT-related markers, upregulation of the TGF-β/Smad2/3 axis, and elevated pro-inflammatory molecules, TNF-α, IL-1β, IL-18 and phospho-NF-kB (p65) in the DN control group. IMP treatment did not significantly reduce the blood glucose level compared to the DN control group. However, IMP treatment effectively improved renal damage by ameliorating kidney histological changes and serum renal injury markers. IMP treatment restored renal antioxidants and exhibited anti-inflammatory effects in the kidneys. Moreover, the abnormal manifestation of EMT-related attributes and elevated levels of TGF-β, phospho-Smad2/3, and collagen 1 were also normalized in the IMP treatment group. Our findings highlight that IMP may be a potential candidate for treating DN.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Ankana Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Karan Singh Yadav
- Department of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Madhav Nilakanth Mugale
- Department of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India.
| |
Collapse
|
5
|
Iwaniak P, Dobrowolski P, Wróbel J, Kluz T, Wdowiak A, Bojar I, Stangel-Wójcikiewicz K, Poleszak E, Jakimiuk A, Misiek M, Zapała Ł, Wróbel A. The Assessment of the Efficacy of Imperatorin in Reducing Overactive Bladder Symptoms. Int J Mol Sci 2023; 24:15793. [PMID: 37958777 PMCID: PMC10648619 DOI: 10.3390/ijms242115793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Overactive bladder syndrome (OAB) is a prevalent condition that affects the elderly population in particular and significantly impairs quality of life. Imperatorin, a naturally occurring furocoumarin, possesses diverse pharmacological properties that warrant consideration for drug development. The aim of this study was to investigate the potential of imperatorin (IMP) to attenuate the cystometric and biochemical changes typically associated with retinyl acetate-induced overactive bladder (OAB) and to assess its viability as a pharmacological intervention for OAB patients. A total of 60 rats were divided into four groups: I-control, II-rats with rapamycin (RA)-induced OAB, III-rats administered IMP at a dose of 10 mg/kg/day, and IV-rats with RA-induced OAB treated with IMP. IMP or vehicle were injected intraperitoneally for 14 days. The cystometry and assessment of bladder blood flow were performed two days after the last dose of IMP. The rats were then placed in metabolic cages for 24 h. Urothelial thickness measurements and biochemical analyses were performed. Intravesical infusion of RA induced OAB. Notably, intraperitoneal administration of imperatorin had no discernible effect on urinary bladder function and micturition cycles in normal rats. IMP attenuated the severity of RA-induced OAB. RA induced increases in urothelial ATP, calcitonin gene-related peptide (CGRP), organic cation transporter 3 (OCT3), and vesicular acetylcholine transporter (VAChT), as well as significant c-Fos expression in all micturition areas analyzed, which were attenuated by IMP. Furthermore, elevated levels of Rho kinase (ROCK1) and VAChT were observed in the detrusor, which were reversed by IMP in the context of RA-induced OAB in the urothelium, detrusor muscle, and urine. Imperatorin has a mitigating effect on detrusor overactivity. The mechanisms of action of IMP in the bladder appear to be diverse and complex. These findings suggest that IMP may provide protection against RA-induced OAB and could potentially develop into an innovative therapeutic strategy for the treatment of OAB.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rejtana 16c, 35-959 Rzeszow, Poland;
| | - Artur Wdowiak
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Staszica 4-6, 20-081 Lublin, Poland;
| | - Iwona Bojar
- Department of Women’s Health, Institute of Rural Health in Lublin, ul. Jaczewskiego 2, 20-090 Lublin, Poland; (I.B.); (M.M.)
| | - Klaudia Stangel-Wójcikiewicz
- Department of Gynecology and Oncology, Jagiellonian University Medical College, M. Kopernika 23, 31-501 Kraków, Poland;
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland;
- Center for Reproductive Health, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Marcin Misiek
- Department of Women’s Health, Institute of Rural Health in Lublin, ul. Jaczewskiego 2, 20-090 Lublin, Poland; (I.B.); (M.M.)
| | - Łukasz Zapała
- Clinic of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|