1
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
2
|
Deng J, Pan T, Wang D, Hong Y, Liu Z, Zhou X, An Z, Li L, Alfano G, Li G, Dolcetti L, Evans R, Vicencio JM, Vlckova P, Chen Y, Monypenny J, Gomes CADC, Weitsman G, Ng K, McCarthy C, Yang X, Hu Z, Porter JC, Tape CJ, Yin M, Wei F, Rodriguez-Justo M, Zhang J, Tejpar S, Beatson R, Ng T. The MondoA-dependent TXNIP/GDF15 axis predicts oxaliplatin response in colorectal adenocarcinomas. EMBO Mol Med 2024; 16:2080-2108. [PMID: 39103698 PMCID: PMC11393413 DOI: 10.1038/s44321-024-00105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Chemotherapy, the standard of care treatment for cancer patients with advanced disease, has been increasingly recognized to activate host immune responses to produce durable outcomes. Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin-Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15). GDF15 is a negative prognostic factor in CRC and promotes the differentiation of regulatory T cells (Tregs), which inhibit CD8 T-cell activation. Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker. These findings illustrate a potentially common pathway where chemotherapy-induced epithelial oxidative stress drives local immune remodeling for patient benefit, with disruption of this pathway seen in refractory or advanced cases.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Centre (CRC), Medical Pathology Centre (MPC), Cancer Early Detection and Treatment Centre (CEDTC), Translational Medicine Research Centre (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), 518172, Shenzhen, China
| | - Dan Wang
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Yourae Hong
- Digestive Oncology Unit and Centre for Human Genetics, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhengwen An
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Luigi Dolcetti
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Rachel Evans
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Petra Vlckova
- Cell Communication Lab, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Yue Chen
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James Monypenny
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | | | - Gregory Weitsman
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Kenrick Ng
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Xiaoping Yang
- Centre of Excellence for Mass Spectrometry, Proteomics Facility, The James Black Centre, King's College London, London, UK
| | - Zedong Hu
- Digestive Oncology Unit and Centre for Human Genetics, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne Building, London, UK
| | - Christopher J Tape
- Cell Communication Lab, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Mingzhu Yin
- Clinical Research Centre (CRC), Medical Pathology Centre (MPC), Cancer Early Detection and Treatment Centre (CEDTC), Translational Medicine Research Centre (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Fengxiang Wei
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), 518172, Shenzhen, China
| | | | - Jin Zhang
- 3rd Department of Breast Cancer Prevention, Treatment and Research Centre, Tianjin, PR China
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin, PR China
- Tianjin's Clinical Research Centre for Cancer, Tianjin, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
- National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Sabine Tejpar
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), 518172, Shenzhen, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne Building, London, UK.
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|
3
|
Yan H, Ou Q, Chang Y, Liu J, Chen L, Guo D, Zhang S. 5-Fluorouracil resistance-based immune-related gene signature for COAD prognosis. Heliyon 2024; 10:e34535. [PMID: 39130472 PMCID: PMC11315090 DOI: 10.1016/j.heliyon.2024.e34535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Background Drug resistance is the primary obstacle to advanced tumor therapy and the key risk factor for tumor recurrence and death. 5-Fluorouracil (5-FU) chemotherapy is the most common chemotherapy for individuals with colorectal cancer, despite numerous options. Methods The Gene Expression Omnibus database was utilized to extract expression profile data of HCT-8 human colorectal cancer wild-type cells and their 5-FU-induced drug resistance cell line. These data were used to identify 5-FU resistance-related differentially expressed genes (5FRRDEGs), which intersected with the colorectal adenocarcinoma (COAD) transcriptome data provided by the Cancer Genome Atlas Program database. A prognostic signature containing five 5FRRDEGs (GOLGA8A, KLC3, TIGD1, NBPF1, and SERPINE1) was established after conducting a Cox regression analysis. We conducted nomogram development, drug sensitivity analysis, tumor immune microenvironment analysis, and mutation analysis to assess the therapeutic value of the prognostic qualities. Results We identified 166 5FRRDEGs in patients with COAD. Subsequently, we created a prognostic model consisting of five 5FRRDEGs using Cox regression analysis. The patients with COAD were divided into different risk groups by risk score; the high-risk group demonstrated a worse prognosis than the low-risk group. Conclusion In summary, the 5FRRDEG-based prognostic model is an effective tool for targeted therapy and chemotherapy in patients with COAD. It can accurately predict the survival prognosis of these patients as well as to provide the direction for exploring the resistance mechanism underlying COAD.
Collapse
Affiliation(s)
- Haixia Yan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410208, China
| | - Linzi Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Duanyang Guo
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
4
|
Biró B, Gál Z, Fekete Z, Klecska E, Hoffmann OI. Mitochondrial genome plasticity of mammalian species. BMC Genomics 2024; 25:278. [PMID: 38486136 PMCID: PMC10941376 DOI: 10.1186/s12864-024-10201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
There is an ongoing process in which mitochondrial sequences are being integrated into the nuclear genome. The importance of these sequences has already been revealed in cancer biology, forensic, phylogenetic studies and in the evolution of the eukaryotic genetic information. Human and numerous model organisms' genomes were described from those sequences point of view. Furthermore, recent studies were published on the patterns of these nuclear localised mitochondrial sequences in different taxa.However, the results of the previously released studies are difficult to compare due to the lack of standardised methods and/or using few numbers of genomes. Therefore, in this paper our primary goal is to establish a uniform mining pipeline to explore these nuclear localised mitochondrial sequences.Our results show that the frequency of several repetitive elements is higher in the flanking regions of these sequences than expected. A machine learning model reveals that the flanking regions' repetitive elements and different structural characteristics are highly influential during the integration process.In this paper, we introduce a general mining pipeline for all mammalian genomes. The workflow is publicly available and is believed to serve as a validated baseline for future research in this field. We confirm the widespread opinion, on - as to our current knowledge - the largest dataset, that structural circumstances and events corresponding to repetitive elements are highly significant. An accurate model has also been trained to predict these sequences and their corresponding flanking regions.
Collapse
Affiliation(s)
- Bálint Biró
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary.
- Group BM, Data Insights Team, _VOIS, Kerepesi str. 35, 1087, Budapest, Hungary.
| | - Zoltán Gál
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary
| | - Zsófia Fekete
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary
| | - Eszter Klecska
- FamiCord Group, Krio Institute, Kelemen László str, 1026, Budapest, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary.
| |
Collapse
|
5
|
Garrido P, Casas-Benito A, Larrayoz IM, Narro-Íñiguez J, Rubio-Mediavilla S, Zozaya E, Martín-Carnicero A, Martínez A. Expression of Mitochondrial Long Non-Coding RNAs, MDL1 and MDL1AS, Are Good Prognostic and/or Diagnostic Biomarkers for Several Cancers, Including Colorectal Cancer. Cancers (Basel) 2024; 16:960. [PMID: 38473321 DOI: 10.3390/cancers16050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Non-coding RNAs provide new opportunities to identify biomarkers that properly classify cancer patients. Here, we study the biomarker status of the mitochondrial long non-coding RNAs, MDL1 and MDL1AS. Expression of these genes was studied in public transcriptomic databases. In addition, a cohort of 69 locally advanced rectal cancer (LARC) patients with a follow-up of more than 5 years was used to determine the prognostic value of these markers. Furthermore, cell lines of colorectal (HCT116) and breast (MDA-MB-231) carcinoma were employed to study the effects of downregulating MDL1AS in vitro. Expression of MDL1AS (but not MDL1) was significantly different in tumor cells than in the surrounding tissue in a tumor-type-specific context. Both MDL1 and MDL1AS were accurate biomarkers for the 5-year survival of LARC patients (p = 0.040 and p = 0.007, respectively) with promising areas under the curve in the ROC analyses (0.820 and 0.930, respectively). MDL1AS downregulation reduced mitochondrial respiration in both cell lines. Furthermore, this downregulation produced a decrease in growth and migration on colorectal cells, but the reverse effects on breast cancer cells. In summary, MDL1 and MDL1AS can be used as reliable prognostic biomarkers of LARC, and MDL1AS expression provides relevant information on the diagnosis of different cancers.
Collapse
Affiliation(s)
- Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Adrián Casas-Benito
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Ignacio M Larrayoz
- Department of Nursing, Biomarkers, Artificial Intelligence and Signaling (BIAS), University of La Rioja, 26004 Logroño, Spain
| | - Judit Narro-Íñiguez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | | | - Enrique Zozaya
- Pathology Service, Hospital de Calahorra, 26500 Calahorra, Spain
| | | | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
6
|
Huang B, He Z. Protein Kinase D1 Correlates with Less Lymph Node Metastasis Risk, Enhanced 5-FU Sensitivity, and Better Prognosis in Colorectal Cancer. TOHOKU J EXP MED 2023; 260:305-314. [PMID: 37225445 DOI: 10.1620/tjem.2023.j042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein kinase D1 (PKD1) controls tumor growth and invasion of gastrointestinal tract-related cancers, but its prognostic role in colorectal cancer (CRC) is not clear yet. Therefore, this research intended to assess the potential of PKD1 as a marker for CRC patients' management, also to evaluate its effect on 5-fluorouracil (5-FU) chemosensitivity in CRC cell lines. PKD1 protein and mRNA expressions were measured by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction assays in 214 CRC patients, respectively. The PKD1 overexpression plasmids and negative control (NC) plasmids were transfected into the HCT-116 and LoVo cell lines followed by 0-16 μM 5-FU treatment. PKD1 protein (P < 0.001) and mRNA expressions (P < 0.001) were both descended in tumor tissues compared to tumor-adjacent tissues. Meanwhile, tumor PKD1 protein and mRNA expressions were both negatively related to lymph node metastasis, N stage, and tumor-node-metastasis (TNM) stage (all P < 0.05). Prognostically, high expressions of PKD1 protein and mRNA were linked with prolonged disease-free survival (DFS) and overall survival (OS) (all P < 0.05). After adjustment by multivariate Cox analyses, PKD1 mRNA high expression independently forecasted longer DFS [hazard ratio (HR) = 0.199, P = 0.002] and OS (HR = 0.212, P = 0.022). In vitro experiments revealed that PKD1 overexpression decreased the half maximal inhibitory concentration value of 5-FU in the HCT-116 (P = 0.016) and LoVo (P = 0.007) cell lines. PKD1 expression links with less lymph node metastasis risk and satisfied prognosis in CRC patients, which promotes CRC cell chemosensitivity to 5-FU chemosensitivity as well.
Collapse
Affiliation(s)
- Bo Huang
- Gastroduodenal Pancreas Surgery Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
| | - Zhuo He
- Gastroduodenal Pancreas Surgery Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
| |
Collapse
|