1
|
Zhang L, Lin L, Xiao B, Huang K, Liu J, Chen YL, Lu L, Zhang Z, Zhang L, Li J, Ho KT, Luo L, Huang SY, Li G. Eicosapentaenoic acid (EPA) reduced lipopolysaccharide-stimulated inflammatory response of RAW264.7 cells via the miR-125b-5p/CREB axis. Int J Biol Macromol 2025; 310:143511. [PMID: 40286950 DOI: 10.1016/j.ijbiomac.2025.143511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Inflammation represents an adaptive physiological response of body immune system to infection or tissue damage, which may be regulated by food supplementation. Eicosapentaenoic acid (EPA) has multi-functions and its anti-inflammatory effect has gained great attention. This study aimed to address the exact molecular mechanism underlying its inflammatory control. The results showed that EPA decreased lipopolysaccharide-induced inflammatory response in RAW264.7 cells by modulating the production of cellular cytokines. In addition, EPA downregulated miR-125b-5p, which showed pro-inflammatory effect and its forced expression attenuated EPA's anti-inflammatory activity. Moreover, the cAMP-responsive element-binding protein (CREB) is targeted by miR-125b-5p. CREB overexpression reduced inflammation probably via modulating the PGC-1α/NF-κB pathway, which resembled the effect of EPA pre-treatment. Therefore, EPA exhibited anti-inflammatory activity by targeting the miR-125b-5p/CREB axis, which modulated the production of inflammatory mediators probably via transcription control. This study provides insights into microRNA-mediated action mechanism and facilitates the relief of inflammation-associated diseases by food ingredients.
Collapse
Affiliation(s)
- Liyuan Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Lingli Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Baoping Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Kaiyan Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Liming Lu
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China
| | - Kuo-Ting Ho
- Center for Precision Medicine, Quanzhou, Fujian 362123, PR China; HI. Q Biomedical Laboratory, Quanzhou, Fujian 362123, PR China
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, PR China
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China.
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen Fujian 361021, PR China; The National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen, Fujian 361021, PR China; Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, PR China; Xiamen Marine Functional Food Key Laboratory, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
2
|
Astaneh ME, Fereydouni N. Nanocurcumin-enhanced zein nanofibers: Advancing macrophage polarization and accelerating wound healing. Regen Ther 2025; 28:51-62. [PMID: 39687330 PMCID: PMC11647652 DOI: 10.1016/j.reth.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Chronic wounds continue to pose a significant global challenge, incurring substantial costs and necessitating extensive research in wound healing. Our previous work involved synthesizing zein nanofibers embedded with 5 %, 10 %, and 15 % nano-curcumin (Zein/nCUR 5, 10, and 15 % NFs), and examining their physicochemical and biological properties. This study aims to explore the potential of these nanofibers in macrophage (MØ) polarization and wound healing. Methods We assessed the survival of RAW264.7 cells cultured on Zein/nCUR 5, 10, and 15 % NFs using the MTT assay. To evaluate MØ polarization, we measured the expression of iNOS and Arg-1 genes in MØs cultured on Zein/nCUR 10 % NFs through real-time PCR. Furthermore, we examined the nanofibers' impact on pro-inflammatory cytokine expression (IL-1β, IL-6, TNF-α) in MØs via real-time PCR. The wound healing efficacy of Zein/nCUR 10 % NFs was tested on 54 male rats with full-thickness wounds, with assessments conducted on days 3, 7, and 14. Wound closure, re-epithelialization, and collagen secretion were evaluated through photographic analysis and tissue staining. Statistical analyses were performed using GraphPad Prism 6, with significance set at p < 0.05. Results Zein/nCUR 10 % NFs significantly enhanced the survival of RAW264.7 cells compared to other groups. They also markedly reduced iNOS expression and increased Arg-1 expression, indicating successful polarization of M1 to M2 MØs. Additionally, these nanofibers decreased the expression of IL-1β, IL-6, and TNF-α, and significantly improved wound closure, re-epithelialization, and collagen deposition compared to control and Zein groups. Conclusions This study demonstrates that Zein/nCUR 10 % NFs effectively polarize MØs from M1 to M2, significantly enhancing wound healing, thus offering a promising therapeutic approach for improved wound care.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
3
|
Smyth TR, Brocke S, Kim YH, Christianson C, Kovalcik KD, Pancras JP, Hays MD, Wu W, An Z, Jaspers I. Human Monocyte-Derived Macrophages Demonstrate Distinct Responses to Ambient Particulate Matter in a Polarization State- and Particle Seasonality-Specific Manner. Chem Res Toxicol 2025; 38:73-90. [PMID: 39704336 DOI: 10.1021/acs.chemrestox.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Macrophages are professional phagocytic immune cells that, following activation, polarize on a spectrum between the proinflammatory M1 and the proresolution M2 states. Macrophages have further been demonstrated to retain plasticity, allowing for the reprogramming of their polarization states following exposure to new stimuli. Particulate matter (PM) has been repeatedly shown to modify macrophage function and polarization while also inducing worsening respiratory infection morbidity and mortality. However, limited work has considered the impact of the initial macrophage polarization state on subsequent responses to PM exposure. PM composition can demonstrate seasonality-specific compositional changes based on differences in seasonal weather patterns and energy needs, introducing the need to consider the seasonality-specific effects of airborne PM when investigating its impact on human health. This study sought to determine the impact of airborne PM collected during different seasons of the year in Xinxiang, China, on macrophage function in a polarization state-dependent manner. Macrophages were differentiated using the macrophage colony-stimulating factor (M-CSF) on CD14+CD16- monocytes isolated from the blood of healthy human volunteers. The resulting macrophages were polarized into indicated states using well-characterized polarization methods and assessed for phagocytic function, bioenergetic properties, and secretory profile following exposure to PM collected during a single day during each season of the year. Macrophages demonstrated clear polarization state-dependent phagocytic, bioenergetic, and secretory properties at the baseline and following PM exposure. Specific PM seasonality had a minimal impact on phagocytic function and a minor effect on bioenergetic properties but had clear impacts on the secretory profile as demonstrated by the enriched secretion of well-characterized mediator clusters by particle season. Together, these data suggest that both particle seasonality and macrophage polarization state must be considered when investigating the impact of PM on macrophage function. These factors may contribute to the negative outcomes linked to PM exposure during respiratory infections.
Collapse
Affiliation(s)
- Timothy R Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Stephanie Brocke
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Yong Ho Kim
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Cara Christianson
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Kasey D Kovalcik
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Joseph Patrick Pancras
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Michael D Hays
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453004, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453004, China
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| |
Collapse
|
4
|
Intharuksa A, Arunotayanun W, Takuathung MN, Boongla Y, Chaichit S, Khamnuan S, Prasansuklab A. Therapeutic Potential of Herbal Medicines in Combating Particulate Matter (PM)-Induced Health Effects: Insights from Recent Studies. Antioxidants (Basel) 2024; 14:23. [PMID: 39857357 PMCID: PMC11762796 DOI: 10.3390/antiox14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM), particularly fine (PM2.5) and ultrafine (PM0.1) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications. This review comprehensively examines the protective potential of natural products against PM-induced health issues across various physiological systems, including the respiratory, cardiovascular, skin, neurological, gastrointestinal, and ocular systems. It provides valuable insights into the health risks associated with PM exposure and highlights the therapeutic promise of herbal medicines by focusing on the natural products that have demonstrated protective properties in both in vitro and in vivo PM2.5-induced models. Numerous herbal medicines and phytochemicals have shown efficacy in mitigating PM-induced cellular damage through their ability to counteract oxidative stress, suppress pro-inflammatory responses, and enhance cellular defense mechanisms. These combined actions collectively protect tissues from PM-related damage and dysfunction. This review establishes a foundation for future research and the development of effective interventions to combat PM-related health issues. However, further studies, including in vivo and clinical trials, are essential to evaluate the safety, optimal dosages, and long-term effectiveness of herbal treatments for patients under chronic PM exposure.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Faculty of Public Health and Allied Health Science, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Suthiwat Khamnuan
- Faculty of Pharmacy, Western University, Pathum Thani 12150, Thailand;
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Chandel J, Naura AS. Dynamics of Inflammatory and Pathological Changes Induced by Single Exposure of Particulate Matter (PM 2.5) in Mice: Potential Implications in COPD. Cell Biochem Biophys 2024; 82:3463-3475. [PMID: 39031246 DOI: 10.1007/s12013-024-01433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive disorder of lungs marked by chronic bronchitis and emphysema. Particulate matter (PM2.5), a major component of air pollution has been correlated with COPD incidence. The present work aimed to understand dynamics of cellular/molecular players behind PM2.5-mediated COPD pathogenesis in mice by conducting dose and time-course studies. Single intratracheal exposure of PM2.5 at a dose of either 100 or 200 μg induced inflammatory response in lungs at 4 days. Time course studies showed that inflammation once triggered by PM2.5 is progressive in nature as reflected by data on BALF inflammatory cells at 7/14 days. Similarly, various cytokines/chemokines (KC/IL-6/TNF-α/IL-1β/G-CSF/MCP-1) peak at either 7 or 14 days. However, inflammation declined sharply at 21 days. Data on LPO/GSH and activities of SOD/Catalase show induction of continuous oxidative stress in lung tissue. Next, enhanced mtROS in the CD11b+ inflammatory cells confirms the redox imbalance in neutrophils/macrophages. A continuous decline in lung function was observed till 28 days. Further, histological analysis of lung tissues at 28 days confirmed the presence of emphysematous lesions, validating the potency of PM2.5 to cause irreversible damage to lungs through complex interplay of various cellular/molecular players which may be exploited as potential preventive/therapeutic targets.
Collapse
Affiliation(s)
- Jitender Chandel
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Zuo H, Zhou W, Chen Y, Zhou B, Wang Z, Huang S, Alinejad T, Chen C. Palmatine Alleviates Particulate Matter-Induced Acute Lung Injury by Inhibiting Pyroptosis via Activating the Nrf2-Related Pathway. Inflammation 2024; 47:1793-1805. [PMID: 38598115 PMCID: PMC11549208 DOI: 10.1007/s10753-024-02009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Particulate matter (PM) induces and enhances oxidative stress and inflammation, leading to a variety of respiratory diseases, including acute lung injury. Exploring new treatments for PM-induced lung injury has long been of interest to researchers. Palmatine (PAL) is a natural extract derived from plants that has been reported in many studies to alleviate inflammatory diseases. Our study was designed to explore whether PAL can alleviate acute lung injury caused by PM. The acute lung injury model was established by instilling PM (4 mg/kg) into the airway of mice, and PAL (50 mg/kg and 100 m/kg) was administrated orally as the treatment groups. The effect and mechanism of PAL treatment were examined by immunofluorescence, immunohistochemistry, Western Blotting, ELISA, and other experiments. The results showed that oral administration of PAL (50 mg/kg and 100 m/kg) could significantly alleviate lung inflammation and acute lung injury caused by PM. In terms of mechanism, we found that PAL (50 mg/kg) exerts anti-inflammatory and anti-damage effects mainly by enhancing the activation of the Nrf2-related antioxidant pathway and inhibiting the activation of the NLRP3-related pyroptosis pathway in mice. These mechanisms have also been verified in our cell experiments. Further cell experiments showed that PAL may reduce intracellular reactive oxygen species (ROS) by activating Nrf2-related pathways, thereby inhibiting the activation of NLRP3-related pyroptosis pathway induced by PM in Beas-2B cell. Our study suggests that PAL can be a new option for PM-induced acute lung injury.
Collapse
Affiliation(s)
- Hao Zuo
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanting Zhou
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yijing Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Binqian Zhou
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengkai Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Pulmonary and Critical Care Medicine, the, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Shuai Huang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tahereh Alinejad
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Institute of Cell Growth Factor, and Brain Health), Wenzhou Medical University, VisionWenzhou, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Pulmonary and Critical Care Medicine, the, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
7
|
Kim H, Choi J, Seo J, Lim H, Kang SK. CKD-497 inhibits NF-kB signaling and ameliorates inflammation and pulmonary fibrosis in ovalbumin-induced asthma and particulate matter-induced airway inflammatory diseases. Front Pharmacol 2024; 15:1428567. [PMID: 39170711 PMCID: PMC11336248 DOI: 10.3389/fphar.2024.1428567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Air pollution, allergens, and bacterial infections are major contributors to pathological respiratory disorders worldwide. CKD-497, derived from the rhizome of Atractylodes japonica and the fruits of Schisandra chinensis, is known for its ability to relieve cough and facilitate phlegm expectoration. However, its protective action against allergic asthma and fine dust-induced lung inflammation, along with its underlying mechanisms, have not been thoroughly investigated. Methods: In this study, we established mouse models of ovalbumin (OVA)-induced asthma and particulate matter (PM)-induced pulmonary inflammation to evaluate the effects of CKD-497. Mice were administered CKD-497 orally, and various parameters such as airway inflammation, mucus production, and proinflammatory cytokine levels (IL-1β, IL-6, TNF-α) were measured. Additionally, the macrophage cell line RAW264.7 was pretreated with CKD-497 and stimulated with lipopolysaccharide (LPS) to assess inflammation via the NF-kB signaling pathway. Results: Oral administration of CKD-497 effectively attenuated airway inflammation and mucus production in both OVA-induced asthma and PM-induced lung inflammation models. It also significantly decreased the production of proinflammatory cytokines IL-1β, IL-6, and TNF-α. CKD-497 alleviated leukocyte infiltration, including neutrophils, and reduced fibrillary collagen deposition in PM10-treated mice. In vitro, CKD-497 pretreatment inhibited LPS-induced inflammation in RAW264.7 cells through the suppression of the NF-kB signaling pathway. Discussion: CKD-497 shows potent anti-inflammatory effects in mouse models of asthma and PM-induced lung inflammation, potentially mediated by the inhibition of the NF-kB pathway. These findings suggest that CKD-497 could serve as a functional supplement to protect against respiratory diseases by mitigating pulmonary and airway inflammation induced by allergens and air pollution.
Collapse
Affiliation(s)
- Hyejeong Kim
- Department of Synthetic Chemistry, Chong Kun Dang Research Institute, Yongin-si, Gyeonggi-do, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Uzun N, Durmus S, Gercel G, Aksu B, Misirlioglu NF, Uzun H. Effects of Bosentan on Hypoxia, Inflammation and Oxidative Stress in Experimental Blunt Thoracic Trauma Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1148. [PMID: 39064577 PMCID: PMC11278988 DOI: 10.3390/medicina60071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: In this study, we aimed to investigate the effects of bosentan, an endothelin receptor antagonist, on endothelin-1 (ET-1), hypoxia-inducible factor-1 (HIF-1), nuclear factor-kappa B (NF-κB), and tumor necrosis factor (TNF)-α as inflammation markers, pro-oxidant antioxidant balance (PAB), and total antioxidant capacity (TAC) levels as oxidative stress parameters in lung tissues of rats in an experimental model of pulmonary contusion (PC) induced by blunt thoracic trauma. Materials and Methods: Thirty-seven male Sprague-Dawley rats were divided into five groups. C: The control group (n = 6) consisted of unprocessed and untreated rats. PC3 (n = 8) underwent 3 days of PC. PC-B3 (n = 8) received 100 mg/kg bosentan and was given orally once a day for 3 days. The PC7 group (n = 7) underwent 7 days of PC, and PC-B7 (n = 8) received 100 mg/kg bosentan and was given orally once a day for 7 days. Results: ET-1, NF-κB, TNF-α, HIF-1α, and PAB levels were higher, while TAC activity was lower in all groups compared with the control (p < 0.05). There was no significant difference in ET-1 and TNF-α levels between the PC-B3 and PC-B7 groups and the control group (p < 0.05), while NF-κB, HIF-1α, and PAB levels were still higher in both the PC-B3 and PC-B7 groups than in the control group. Bosentan decreased ET-1, NF-κB, TNF-α, HIF-1α, and PAB and increased TAC levels in comparison to the nontreated groups (p < 0.05). Conclusions: Bosentan decreased the severity of oxidative stress in the lungs and reduced the inflammatory reaction in rats with PC induced by blunt thoracic trauma. This suggests that bosentan may have protective effects on lung injury mechanisms by reducing hypoxia, inflammation, and oxidative stress. If supported by similar studies, bosentan can be used in both pulmonary and emergency clinics to reduce ischemic complications, inflammation, and oxidative stress in some diseases that may be accompanied by ischemia.
Collapse
Affiliation(s)
- Nedim Uzun
- Department of Emergency, Gaziosmanpaşa Training and Research Hospital, University of Health Sciences, Istanbul 34098, Turkey;
| | - Sinem Durmus
- Department of Medical Biochemistry, Faculty of Medicine, Katip Celebi University, Izmir 35620, Turkey;
| | - Gonca Gercel
- Department of Pediatric Surgery, Istanbul Medeniyet University Göztepe Training and Research Hospital, Istanbul 34730, Turkey; (G.G.); (B.A.)
| | - Burhan Aksu
- Department of Pediatric Surgery, Istanbul Medeniyet University Göztepe Training and Research Hospital, Istanbul 34730, Turkey; (G.G.); (B.A.)
| | - Naile Fevziye Misirlioglu
- Department of Biochemistry, Gaziosmanpaşa Training and Research Hospital, University of Health Sciences, Istanbul 34098, Turkey;
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul 34408, Turkey
| |
Collapse
|
9
|
Wang Y, Dong H, Qu H, Cheng W, Chen H, Gu Y, Jiang H, Xue X, Hu R. Biomimetic Lung-Targeting Nanoparticles with Antioxidative and Nrf2 Activating Properties for Treating Ischemia/Reperfusion-Induced Acute Lung Injury. NANO LETTERS 2024; 24:2131-2141. [PMID: 38227823 DOI: 10.1021/acs.nanolett.3c03671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanjun Wang
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Dong
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haijing Qu
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Cheng
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunfan Gu
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hong Jiang
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiangdong Xue
- School of Pharmaceutical Sciences, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Hu
- Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
10
|
David IG, Iorgulescu EE, Popa DE, Buleandra M, Cheregi MC, Noor H. Curcumin Electrochemistry-Antioxidant Activity Assessment, Voltammetric Behavior and Quantitative Determination, Applications as Electrode Modifier. Antioxidants (Basel) 2023; 12:1908. [PMID: 38001760 PMCID: PMC10669510 DOI: 10.3390/antiox12111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Curcumin (CU) is a polyphenolic compound extracted from turmeric, a well-known dietary spice. Since it has been shown that CU exerts beneficial effects on human health, interest has increased in its use but also in its analysis in different matrices. CU has an antioxidant character and is electroactive due to the presence of phenolic groups in its molecule. This paper reviews the data reported in the literature regarding the use of electrochemical techniques for the assessment of CU antioxidant activity and the investigation of the voltammetric behavior at different electrodes of free or loaded CU on various carriers. The performance characteristics and the analytical applications of the electrochemical methods developed for CU analysis are compared and critically discussed. Examples of voltammetric investigations of CU interaction with different metallic ions or of CU or CU complexes with DNA as well as the CU applications as electrode modifiers for the enhanced detection of various chemical species are also shown.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Carmen Cheregi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania;
- Medlife-Polisano Hospital, Strada Izvorului 1A, 550172 Sibiu, Romania
| |
Collapse
|
11
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|