1
|
Porter L, Sultan O, Mitchell BG, Jenney A, Kiernan M, Brewster DJ, Russo PL. How long do nosocomial pathogens persist on inanimate surfaces? A scoping review. J Hosp Infect 2024; 147:25-31. [PMID: 38447803 DOI: 10.1016/j.jhin.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Healthcare hygiene plays a crucial role in the prevention of healthcare-associated infections. Patients admitted to a room where the previous occupant had a multi-drug-resistant bacterial infection are at an increased risk of colonization and infection with the same organism. A 2006 systematic review by Kramer et al. found that certain pathogens can survive for months on dry surfaces. The aim of this review is to update Kramer et al.'s previous review and provide contemporary data on the survival of pathogens relevant to the healthcare environment. We systematically searched Ovid MEDLINE, CINAHL and Scopus databases for studies that described the survival time of common nosocomial pathogens in the environment. Pathogens included in the review were bacterial, viral, and fungal. Studies were independently screened against predetermined inclusion/exclusion criteria by two researchers. Conflicts were resolved by one of two senior researchers. A spreadsheet was developed for the data extraction. The search identified 1736 studies. Following removal of duplicates and application of the search criteria, the synthesis of results from 62 included studies were included. 117 organisms were reported. The longest surviving organism reported was Klebsiella pneumoniae which was found to have persisted for 600 days. Common pathogens of concern to infection prevention and control, can survive or persist on inanimate surfaces for months. This data supports the need for a risk-based approach to cleaning and disinfection practices, accompanied by appropriate training, audit and feedback which are proven to be effective when adopted in a 'bundle' approach.
Collapse
Affiliation(s)
- L Porter
- Department of Nursing Research, Cabrini Health, Malvern, Australia; School of Medicine, Monash University, Clayton, Australia
| | - O Sultan
- Department of Nursing Research, Cabrini Health, Malvern, Australia; School of Medicine, Monash University, Clayton, Australia
| | - B G Mitchell
- School of Nursing, Avondale University, Wahroonga, Australia; School of Nursing and Midwifery, Monash University, Clayton, Australia; School of Nursing and Midwifery, University of Newcastle, Callaghan, Australia
| | - A Jenney
- Microbiology Unit, Alfred Health, Prahran, Australia
| | - M Kiernan
- Richard Wells Research Centre, University of West London, London, UK
| | - D J Brewster
- Central Clinical School, Monash University, Clayton, Australia; Intensive Care Unit, Cabrini Health, Malvern, Australia
| | - P L Russo
- Department of Nursing Research, Cabrini Health, Malvern, Australia; School of Medicine, Monash University, Clayton, Australia; School of Nursing, Avondale University, Wahroonga, Australia.
| |
Collapse
|
2
|
Bento de Carvalho T, Barbosa JB, Teixeira P. Assessing Antimicrobial Efficacy on Plastics and Other Non-Porous Surfaces: A Closer Look at Studies Using the ISO 22196:2011 Standard. BIOLOGY 2024; 13:59. [PMID: 38275735 PMCID: PMC10813364 DOI: 10.3390/biology13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The survival and spread of foodborne and nosocomial-associated bacteria through high-touch surfaces or contamination-prone sites, in either healthcare, domestic or food industry settings, are not always prevented by the employment of sanitary hygiene protocols. Antimicrobial surface coatings have emerged as a solution to eradicate pathogenic bacteria and prevent future infections and even outbreaks. Standardised antimicrobial testing methods play a crucial role in validating the effectiveness of these materials and enabling their application in real-life settings, providing reliable results that allow for comparison between antimicrobial surfaces while assuring end-use product safety. This review provides an insight into the studies using ISO 22196, which is considered the gold standard for antimicrobial surface coatings and examines the current state of the art in antimicrobial testing methods. It primarily focuses on identifying pitfalls and how even small variations in methods can lead to different results, affecting the assessment of the antimicrobial activity of a particular product.
Collapse
Affiliation(s)
| | - Joana Bastos Barbosa
- Universidade Católica Portuguesa, Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.d.C.); (P.T.)
| | | |
Collapse
|