1
|
Moustafa YM, Mageed SSA, El-Dakroury WA, Moustafa HAM, Sallam AAM, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Nomier Y, Elesawy AE, Abdel-Reheim MA, Zaki MB, Rizk NI, Ayed A, Ibrahim RA, Doghish AS. Exploring the molecular pathways of miRNAs in testicular cancer: from diagnosis to therapeutic innovations. Funct Integr Genomics 2025; 25:88. [PMID: 40229500 DOI: 10.1007/s10142-025-01599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Cancer diagnostics highlight the critical requirement for sensitive and accurate tools with functional biomarkers for early tumor detection, diagnosis, and treatment. With a high burden of morbidity and mortality among young men worldwide and an increasing prevalence, Testicular cancer (TC) is a significant death-related cancer. Along with patient history, imaging, clinical presentation, and laboratory data, histological analysis of the testicular tissue following orchiectomy is crucial. Although some patients in advanced stages who belong to a poor risk group die from cancer, surgical treatments and chemotherapeutic treatment offer a high possibility of cure in the early stages. Testicular tumors lack useful indicators despite their traditional pathological classification, which highlights the need to find and use blood tumor markers in therapy. Regretfully, the sensitivity and specificity of the currently available biomarkers are restricted. Novel non-coding RNA molecules, microRNAs (miRNAs), have recently been discovered, offering a potential breakthrough as viable biomarkers and diagnostic tools. They act as fundamental gene regulators at the post-transcriptional level, controlling cell proliferation, differentiation, and apoptosis. This article aims to comprehensively explore the role of miRNAs in the pathophysiology, diagnosis, and treatment of TC, with a focus on their regulatory mechanisms within key signaling pathways such as TGF-β, PTEN/AKT/mTOR, EGFR, JAK/STAT, and WNT/β-catenin. By investigating the potential of miRNAs as diagnostic and prognostic biomarkers and therapeutic targets, this study seeks to address challenges such as treatment resistance and evaluate the clinical importance of miRNAs in improving patient outcomes. Additionally, the work aims to explore innovative approaches, including nanoparticle-based delivery systems, to enhance the efficacy of miRNA-based therapies. Ultimately, this research aims to provide insights into future directions for precision medicine in TC, bridging the gap between molecular discoveries and clinical applications.
Collapse
Affiliation(s)
- Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, P.O Box 551, 61922, Bisha, Saudi Arabia
| | - Randa A Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Zhan Z, Luo X, Shi J, Chen L, Ye M, Jin X. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors and potential therapeutic agents (Review). Exp Ther Med 2025; 29:82. [PMID: 40084198 PMCID: PMC11904865 DOI: 10.3892/etm.2025.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/16/2025] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in men aged 20-40 years and are primarily treated with cisplatin-based drugs. Although TGCTs are highly sensitive to DNA damage induced by cisplatin and show a hypersensitive apoptotic response, cisplatin resistance still exists. Emerging evidence shows that cisplatin resistance in TGCTs is mainly related to the inhibition of apoptotic pathways such as MDM2/p53, OCT4/NOXA, PDGFR/PI3K/AKT, inhibition of cell cycle checkpoints, increased methylation or neddylation and DNA repair balance. In this review, recent advances regarding the mechanisms of TGCTs' sensitivity and resistance to cisplatin were summarized and potential therapeutic agents for cisplatin-resistant TGCTs were presented, providing a new therapeutic strategy for drug-resistant TGCTs.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Litao Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
3
|
Tavares NT, Henrique R, Jerónimo C, Lobo J. Current Role of MicroRNAs in the Diagnosis and Clinical Management of Germ Cell Tumors. Surg Pathol Clin 2025; 18:91-100. [PMID: 39890312 DOI: 10.1016/j.path.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Germ cell tumors (GCTs) are a rare and heterogeneous group of neoplasms arising from primitive germ cells. MicroRNAs are small noncoding RNAs that have emerged as potential cancer biomarkers in the last decade. In particular, miR-371a-3p has shown good diagnostic performance for germ cell neoplasia in situ-derived testicular GCTs in several well-established cohorts and is expected to enter the clinical arena in the near future. GCTs universally exhibit high expression of miR-371-373 and miR-302/367 clusters and low expression of let-7 family miRNAs. Further studies are needed to assess the potential role of these miRNAs as biomarkers of ovarian and extragonadal GCTs.
Collapse
Affiliation(s)
- Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Doctoral Programme in Biomedical Sciences, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC) & CI-IPOP@RISE (Health Research Network), IPO Porto, Research Center, CI-LAB3, 1st Floor, F Building. Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, Porto 4050-513, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| |
Collapse
|
4
|
Alghamian Y, Soukkarieh C, Aljapawe A, Murad H. Exploring miRNA profile associated with cisplatin resistance in ovarian cancer cells. Biochem Biophys Rep 2025; 41:101906. [PMID: 39830525 PMCID: PMC11741906 DOI: 10.1016/j.bbrep.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Ovarian cancer is a common and lethal malignancy among women, whereas chemoresistance is one of the major challenges to its treatment and prognosis. Chemoresistance is a multifactorial phenomenon, involving various mechanisms that collectively modify the cell's response to treatment. Among the changes that arise in cells after acquiring chemoresistance is miRNA dysregulation. Here, this study aimed to identify miRNAs expression changes related to cisplatin resistance in ovarian cancer cells. The miRNA expression profiles of a cisplatin-sensitive A2780 cell line and two cisplatin-resistant cell lines, A2780cis and SK-OV-3, were analyzed using PCR array and qPCR. Accordingly, the miRNAs that were differentially expressed were further investigated to identify their biological functions and the target pathways using Gene Ontology (GO) annotation and KEGG pathway analyses. In order to evaluate the clinical significance of the differentially expressed miRNAs, survival analysis was carried out using expression data for ovarian cancer patients available in the Kaplan-Meier (KM) plotter database. The current work demonstrates that Nine miRNAs were found to be upregulated in cells resistant to cisplatin. Clearly, these miRNAs have functions in cell death/survival related processes and treatment response. They may also target pathways involved in treatment response like PI3K-Akt, pathway in cancer and MAPK. Interestingly, High expression of hsa-miR-133b, hsa-miR-512-are, hsa-miR-200b-3p, and hsa-miR-451a is related to poor overall survival in patients diagnosed with ovarian cancer. Our findings suggest that hsa-miR-133b, hsa-miR-512-5p, hsa-miR-200b-3p, and hsa-miR-451a are good candidates for future studies aimed to establishing functional links and exploring therapeutic interventions to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Abdulmunim Aljapawe
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| | - Hossam Murad
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| |
Collapse
|
5
|
Zhang Y, Su R, Zhang Z, Jiang Y, Miao Y, Zhou S, Ji M, Hsu CW, Xu H, Li Z, Wang G. An ultrasensitive one-pot Cas13a-based microfluidic assay for rapid multiplexed detection of microRNAs. Biosens Bioelectron 2025; 274:117212. [PMID: 39893949 DOI: 10.1016/j.bios.2025.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Aberrant microRNA expression is associated with tumor progression in various organs. Detecting microRNAs as clinical cancer biomarkers can facilitate early cancer diagnosis and monitoring. However, the rapid and accurate quantification of microRNAs from biological samples remains a significant challenge. Here we developed a one-pot isothermal assay utilizing a molecular circuit with CRISPR/Cas13a (CRISPR-circuit) to rapidly convert, amplify and report different microRNAs within 15 min at the attomolar (aM) level. Then the full process was performed on an active centrifugal microfluidic chip and its corresponding portable equipment for parallel detection of multiple microRNAs, including miR-21, miR-141, miR-196a, and miR-1246. We also demonstrated its application for identifying cell lines and clinical samples of cancer patients with varying microRNA levels, which showed a strong correlation with the RT-qPCR. The assay can be easily adapted for the detection of any microRNA by simply modifying the converter primer, thereby holding significant potential for accurate disease detection and clinical diagnosis.
Collapse
Affiliation(s)
- Ya Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Rouyu Su
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Zheng Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Yiyue Jiang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yejia Miao
- Department of health, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Shiqi Zhou
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Miaomiao Ji
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Chih-Wen Hsu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Hongpan Xu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China.
| |
Collapse
|
6
|
Karabay AZ, Ozkan T, Karadag Gurel A, Koc A, Hekmatshoar Y, Sunguroglu A, Aktan F, Buyukbingöl Z. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9701-9721. [PMID: 38916832 PMCID: PMC11582232 DOI: 10.1007/s00210-024-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Chemotherapy resistance is a major obstacle in cancer therapy, and identifying novel druggable targets to reverse this phenomenon is essential. The exosome-mediated transmittance of drug resistance has been shown in various cancer models including ovarian and prostate cancer models. In this study, we aimed to investigate the role of exosomal miRNA transfer in chronic myeloid leukemia drug resistance. For this purpose, firstly exosomes were isolated from imatinib sensitive (K562S) and resistant (K562R) chronic myeloid leukemia (CML) cells and named as Sexo and Rexo, respectively. Then, miRNA microarray was used to compare miRNA profiles of K562S, K562R, Sexo, Rexo, and Rexo-treated K562S cells. According to our results, miR-125b-5p and miR-99a-5p exhibited increased expression in resistant cells, their exosomes, and Rexo-treated sensitive cells compared to their sensitive counterparts. On the other hand, miR-210-3p and miR-193b-3p were determined to be the two miRNAs which exhibited decreased expression profile in resistant cells and their exosomes compared to their sensitive counterparts. Gene targets, signaling pathways, and enrichment analysis were performed for these miRNAs by TargetScan, KEGG, and DAVID. Potential interactions between gene candidates at the protein level were analyzed via STRING and Cytoscape software. Our findings revealed CCR5, GRK2, EDN1, ARRB1, P2RY2, LAMC2, PAK3, PAK4, and GIT2 as novel gene targets that may play roles in exosomal imatinib resistance transfer as well as mTOR, STAT3, MCL1, LAMC1, and KRAS which are already linked to imatinib resistance. MDR1 mRNA exhibited higher expression in Rexo compared to Sexo as well as in K562S cells treated with Rexo compared to K562S cells which may suggest exosomal transfer of MDR1 mRNA.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Aynur Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey.
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Fugen Aktan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeliha Buyukbingöl
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Baky FJ, Matulewicz RS, Feldman DR, Hamilton RJ, Bagrodia A. MicroRNA for Prediction of Teratoma and Viable Germ Cell Tumor after Chemotherapy. Urol Clin North Am 2024; 51:387-394. [PMID: 38925741 DOI: 10.1016/j.ucl.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
MicroRNAs (miRNAs) are emerging as highly sensitive and specific markers for testicular germ cell tumors (GCTs) across the spectrum of disease. However, their utility in specific clinical scenarios requires further study. Here, we review the current evidence for miRNAs as tumor markers for the evaluation of treatment response in patients undergoing chemotherapy for the treatment of advanced testicular GCT.
Collapse
Affiliation(s)
- Fady J Baky
- Department of Urology, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Richard S Matulewicz
- Department of Urology, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Darren R Feldman
- Germ Cell Cancer, Department of Medicine, Memorial Sloan Kettering Cancer Center, 430 East 67th Street, New York, NY 10065, USA
| | - Robert J Hamilton
- Division of Urology, Princess Margaret Hospital, 3-130, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Aditya Bagrodia
- Department of Urology, UC San Diego Health, 9400 Campus Point Drive, Suite 1-200, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Urbini M, Bleve S, Schepisi G, Menna C, Gurioli G, Gianni C, De Giorgi U. Biomarkers for Salvage Therapy in Testicular Germ Cell Tumors. Int J Mol Sci 2023; 24:16872. [PMID: 38069192 PMCID: PMC10706346 DOI: 10.3390/ijms242316872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The outcome of metastatic testicular germ cell tumor patients has been dramatically improved by cisplatin-based chemotherapy combinations. However, up to 30% of patients with advanced disease relapse after first-line therapy and require salvage regimens, which include treatments with conventional-dose chemotherapy or high-dose chemotherapy with autologous stem cell transplantation. For these patients, prognosis estimation represents an essential step in the choice of medical treatment but still remains a complex challenge. The available histological, clinical, and biochemical parameters attempt to define the prognosis, but they do not reflect the tumor's molecular and pathological features and do not predict who will exhibit resistance to the several treatments. Molecular selection of patients and validated biomarkers are highly needed in order to improve current risk stratification and identify novel therapeutic approaches for patients with recurrent disease. Biomolecular biomarkers, including microRNAs, gene expression profiles, and immune-related biomarkers are currently under investigation in testicular germ cell tumors and could potentially hold a prominent place in the future treatment selection and prognostication of these tumors. The aim of this review is to summarize current scientific data regarding prognostic and predictive biomarkers for salvage therapy in testicular germ cell tumors.
Collapse
Affiliation(s)
- Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Cecilia Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Giorgia Gurioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| |
Collapse
|
9
|
Doghish AS, Moustafa HAM, Elballal MS, Sallam AAM, El-Dakroury WA, Abdel Mageed SS, Elesawy AE, Abdelmaksoud NM, Shahin RK, Midan HM, Elrebehy MA, Elazazy O, Nassar YA, Elazab IM, Elballal AS, Elballal MS, Abulsoud AI. The potential role of miRNAs in the pathogenesis of testicular germ cell tumors - A Focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154611. [PMID: 37315401 DOI: 10.1016/j.prp.2023.154611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Testicular germ cell tumors (TGCTs) are the most common testicular neoplasms in adolescents and young males. Understanding the genetic basis of TGCTs represents a growing need to cope with the increased incidence of these neoplasms. Although the cure rates have been comparatively increased, investigation of mechanisms underlying the incidence, progression, metastasis, recurrence, and therapy resistance is still necessary. Early diagnosis and non-compulsory clinical therapeutic agents without long-term side effects are now required to reduce the cancer burden, especially in the younger age groups. MicroRNAs (miRNAs) control an extensive range of cellular functions and exhibit a pivotal action in the development and spreading of TGCTs. Because of their dysregulation and disruption in function, miRNAs have been linked to the malignant pathophysiology of TGCTs by influencing many cellular functions involved in the disease. These biological processes include increased invasive and proliferative perspective, cell cycle dysregulation, apoptosis disruption, stimulation of angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and resistance to certain treatments. Herein, we present an up-to-date review of the biogenesis of miRNAs, miRNA regulatory mechanisms, clinical challenges, and therapeutic interventions of TGCTs, and role of nanoparticles in the treatment of TGCTs.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ibrahim M Elazab
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Ahmed S Elballal
- Department of Dentistry, Medical Administration, University of Sadat, City Menoufia 32897, Egypt
| | | | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
10
|
Elesawy AE, Abulsoud AI, Moustafa HAM, Elballal MS, Sallam AAM, Elazazy O, El-Dakroury WA, Abdel Mageed SS, Abdelmaksoud NM, Midan HM, Shahin RK, Elrebehy MA, Nassar YA, Elazab IM, Elballal AS, Elballal MS, Doghish AS. miRNAs orchestration of testicular germ cell tumors - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154612. [PMID: 37327566 DOI: 10.1016/j.prp.2023.154612] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Testicular cancer (TC) is one of the most frequently incident solid tumors in males. A growing prevalence has been documented in developed countries. Although recent advances have made TC an exceedingly treatable cancer, numerous zones in TC care still have divisive treatment decisions. In addition to physical examination and imaging techniques, conventional serum tumor markers have been traditionally used for the diagnosis of testicular germ cell tumors (TGCT). Unlike other genital and urinary tract tumors, recent research methods have not been broadly used in TGCTs. Even though several challenges in TC care must be addressed, a dedicated group of biomarkers could be particularly beneficial to help classify patient risk, detect relapse early, guide surgery decisions, and tailor follow-up. Existing tumor markers (Alpha-fetoprotein, human chorionic gonadotrophin, and lactate dehydrogenase) have limited accuracy and sensitivity when used as diagnostic, prognostic, or predictive markers. At present, microRNAs (miRNA or miR) play a crucial role in the process of several malignancies. The miRNAs exhibit pronounced potential as novel biomarkers since they reveal high stability in body fluids, are easily detected, and are relatively inexpensive in quantitative assays. In this review, we aimed to shed light on the recent novelties in developing microRNAs as diagnostic and prognostic markers in TC and discuss their clinical applications in TC management.
Collapse
Affiliation(s)
- Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ibrahim M Elazab
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Ahmed S Elballal
- Department of Dentistry, Medical Administration, University of Sadat City Menoufia 32897, Egypt
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Nuñez-Corona D, Contreras-Sanzón E, Puente-Rivera J, Arreola R, Camacho-Nuez M, Cruz Santiago J, Estrella-Parra EA, Torres-Romero JC, López-Camarillo C, Alvarez-Sánchez ME. Epigenetic Factors and ncRNAs in Testicular Cancer. Int J Mol Sci 2023; 24:12194. [PMID: 37569569 PMCID: PMC10418327 DOI: 10.3390/ijms241512194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Testicular cancer is the most prevalent tumor among males aged 15 to 35, resulting in a significant number of newly diagnosed cases and fatalities annually. Non-coding RNAs (ncRNAs) have emerged as key regulators in various cellular processes and pathologies, including testicular cancer. Their involvement in gene regulation, coding, decoding, and overall gene expression control suggests their potential as targets for alternative treatment approaches for this type of cancer. Furthermore, epigenetic modifications, such as histone modifications, DNA methylation, and the regulation by microRNA (miRNA), have been implicated in testicular tumor progression and treatment response. Epigenetics may also offer critical insights for prognostic evaluation and targeted therapies in patients with testicular germ cell tumors (TGCT). This comprehensive review aims to present the latest discoveries regarding the involvement of some proteins and ncRNAs, mainly miRNAs and lncRNA, in the epigenetic aspect of testicular cancer, emphasizing their relevance in pathogenesis and their potential, given the fact that their specific expression holds promise for prognostic evaluation and targeted therapies.
Collapse
Affiliation(s)
- David Nuñez-Corona
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | - Estefania Contreras-Sanzón
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | | | - Rodrigo Arreola
- Departamento De Genética, Instituto Nacional De Psiquiatría “Ramón De la Fuente Muñiz”, Calz. Mexico, Xochimilco 101, Col. Huipulco, Tlalpan, México City 14370, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | - José Cruz Santiago
- Hospital De Especialidades Centro Médico Nacional La Raza, IMSS, México City 02990, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio De Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. De los Barrios No.1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Julio César Torres-Romero
- Laboratorio De Bioquímica y Genética Molecular, Facultad De Química, Universidad Autónoma De Yucatán, Calle 43 s/n x Calle 96, Paseo De las Fuentes y 40, Col. Inalambrica, Yucatán 97069, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma De México (UACM), San Lorenzo 290, Col. Del Valle, México City 03100, Mexico
| |
Collapse
|
12
|
Cuevas-Estrada B, Montalvo-Casimiro M, Munguia-Garza P, Ríos-Rodríguez JA, González-Barrios R, Herrera LA. Breaking the Mold: Epigenetics and Genomics Approaches Addressing Novel Treatments and Chemoresponse in TGCT Patients. Int J Mol Sci 2023; 24:ijms24097873. [PMID: 37175579 PMCID: PMC10178517 DOI: 10.3390/ijms24097873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Testicular germ-cell tumors (TGCT) have been widely recognized for their outstanding survival rates, commonly attributed to their high sensitivity to cisplatin-based therapies. Despite this, a subset of patients develops cisplatin resistance, for whom additional therapeutic options are unsuccessful, and ~20% of them will die from disease progression at an early age. Several efforts have been made trying to find the molecular bases of cisplatin resistance. However, this phenomenon is still not fully understood, which has limited the development of efficient biomarkers and precision medicine approaches as an alternative that could improve the clinical outcomes of these patients. With the aim of providing an integrative landscape, we review the most recent genomic and epigenomic features attributed to chemoresponse in TGCT patients, highlighting how we can seek to combat cisplatin resistance through the same mechanisms by which TGCTs are particularly hypersensitive to therapy. In this regard, we explore ongoing treatment directions for resistant TGCT and novel targets to guide future clinical trials. Through our exploration of recent findings, we conclude that epidrugs are promising treatments that could help to restore cisplatin sensitivity in resistant tumors, shedding light on potential avenues for better prognosis for the benefit of the patients.
Collapse
Affiliation(s)
- Berenice Cuevas-Estrada
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Juan Alberto Ríos-Rodríguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|