1
|
Zhang L, Yang Y, Zhang Y, Yang F. Genome-Wide Investigation of MADS-Box Genes in Flower Development and Environmental Acclimation of Lumnitzera littorea (Jack) Voigt. Int J Mol Sci 2025; 26:1680. [PMID: 40004145 PMCID: PMC11855919 DOI: 10.3390/ijms26041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Lumnitzera littorea (Jack) Voigt is an endangered mangrove species in China. Low fecundity and environmental pressure are supposed to be key factors limiting the population expansion of L. littorea. Transcription factors with the MADS-box domain are crucial regulators of plant flower development, reproduction, and stress response. In this study, we performed a comprehensive investigation into the features and functions of MADS-box genes of L. littorea. Sixty-three LlMADS genes with similar structure and motif composition were identified in the L. littorea genome, and these genes were unevenly distributed on the 11 chromosomes. Segmental duplication was suggested to make a main contribution to the expansion of the LlMADS gene family. Some LIMADS genes exhibited differential expression in different flower types or in response to cold stress. Overexpression of the B-class gene LlMADS37 had substantial effects on the flower morphology and flowering time of transgenic Arabidopsis plants, demonstrating its key role in regulating flower morphogenesis and inflorescence. These findings largely enrich our understanding of the functional importance of MADS-box genes in the inflorescence and stress acclimation of L. littorea and provide valuable resources for future genetic research to improve the conservation of this species.
Collapse
Affiliation(s)
- Linbi Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Yuchen Yang
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, China;
| | - Ying Zhang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Fusun Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| |
Collapse
|
2
|
Sun Q, Liu Y, Ni M, Song Y, Yang Q, Zhang J, Zhang Y, Tong Z. The Mining for Flowering-Related Genes Based on De Novo Transcriptome Sequencing in the Endangered Plant Phoebe chekiangensis. Int J Mol Sci 2025; 26:1000. [PMID: 39940774 PMCID: PMC11817208 DOI: 10.3390/ijms26031000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/28/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Phoebe chekiangensis is an indigenous, endangered, and valuable timber and garden tree species in China, which is notable for having a short juvenile phase (early flowering), unique among the Phoebe genus. However, the molecular mechanisms regulating the flowering of P. chekiangensis remain unexplored, primarily due to the lack of transcriptomic or genomic data. In the present study, transcriptome sequencing yielded 53 million RNA reads, resulting in 111,250 unigenes after de novo assembly. Of these, 47,525 unigenes (42.72%) were successfully annotated in the non-redundant (Nr) database. Furthermore, 15,605 unigenes were assigned to Clusters of Orthologous Groups (KOGs), and 36,370 unigenes were classified into Gene Ontology (GO) categories. A total of 16,135 unigenes were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, involving 298 pathways. Based on the expression levels, Gibberellin signaling pathway-related genes were the most predominant expression levels. Hormonal analysis showed that gibberellin (GA) levels varied across tissues and flowering stages, as GA20 levels in leaves were low during full bloom, while GA1 and GA5 levels peaked in flowers. Furthermore, several key genes involved in gibberellin biosynthesis, including CPS, GID1, GA20ox, GA3ox, and GA2ox, exhibited stage-specific expression patterns. Certain genes were highly expressed during the initial phases of flowering, while others, like GA3ox and GA2ox, reached peak expression at full bloom. These findings provide valuable insights into the molecular mechanisms underlying flowering in P. chekiangensis, laying the foundation for future breeding efforts. This transcriptome dataset will serve as an important public resource for molecular research on this species, facilitating the discovery of functional genes related to its growth, development, and flowering regulation.
Collapse
Affiliation(s)
- Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yan Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Mingyang Ni
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yandong Song
- Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China;
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F Univesity, Hangzhou 311300, China; (Q.S.); (Y.L.); (M.N.); (Q.Y.); (Z.T.)
| |
Collapse
|
3
|
Zhao Y, Lu J, Hu B, Jiao P, Gao B, Jiang Z, Liu S, Guan S, Ma Y. Cloning and functional analysis of ZmMADS42 gene in maize. GM CROPS & FOOD 2024; 15:105-117. [PMID: 38466176 PMCID: PMC10936638 DOI: 10.1080/21645698.2024.2328384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bo Hu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bai Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Zhao H, Jia Y, Niu Y, Wang Y. The BpPP2C-BpMADS11-BpERF61 signaling confers drought tolerance in Betula platyphylla. THE NEW PHYTOLOGIST 2024; 244:2364-2381. [PMID: 39351656 DOI: 10.1111/nph.20164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 11/22/2024]
Abstract
Plant MADS-box proteins are vital for abiotic stress tolerance, yet their mechanisms for responding to drought remain poorly understood. Here, we investigated the drought tolerance mechanism of a MADS-box protein (BpMADS11) from birch (Betula platyphylla) using immunoprecipitation, Western blotting, yeast two-hybrid, yeast one-hybrid, ChIP, RNA-seq, and dual-luciferase assays to explore post-translational modifications, protein interactions, and gene regulation. Birch plants overexpressing BpMADS11 exhibited enhanced drought tolerance, while knockout lines displayed reduced tolerance. Under drought conditions, BpMADS11 interacts with protein phosphatase 2C22 (BpPP2C22), which dephosphorylates BpMADS11. Birch plants that overexpress BpMADS11 and lack BpPP2C22 show significantly reduced drought tolerance compared with those that only overexpress BpMADS11. BpMADS11 regulates the expression of BpERF61 by binding to CArG-box in its promoter. The dephosphorylated BpMADS11 exhibits increased DNA binding ability and increased expression of BpERF61. Like BpMADS11, birch plants overexpressing BpERF61 show improved drought tolerance, while those with BpERF61 knockout exhibit decreased tolerance. BpERF61 binds to specific DNA motifs including 'CACGTG' (G-box), 'GGGCCCC', and 'TTGGAT' to regulate the genes related to drought stress. Collectively, BpMADS11 undergoes dephosphorylation through its interaction with BpPP2C22, prompting the expression of BpERF61. Subsequently, BpERF61 regulates downstream genes by binding to specific DNA motifs, thereby enhancing drought tolerance.
Collapse
Affiliation(s)
- Huimin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yaqi Jia
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yani Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
- Key Laboratory of Forest Tree Genetic Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| |
Collapse
|
5
|
Li J, Zhang W, Lu Q, Sun J, Cheng C, Huang S, Li S, Li Q, Zhang W, Zhou C, Liu B, Xiang F. GmDFB1, an ARM-repeat superfamily protein, regulates floral organ identity through repressing siRNA- and miRNA-mediated gene silencing in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1620-1638. [PMID: 38860597 DOI: 10.1111/jipb.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
The development of flowers in soybean (Glycine max) is essential for determining the yield potential of the plant. Gene silencing pathways are involved in modulating flower development, but their full elucidation is still incomplete. Here, we conducted a forward genetic screen and identified an abnormal flower mutant, deformed floral bud1-1 (Gmdfb1-1), in soybean. We mapped and identified the causal gene, which encodes a member of the armadillo (ARM)-repeat superfamily. Using small RNA sequencing (sRNA-seq), we found an abnormal accumulation of small interfering RNAs (siRNAs) and microRNA (miRNAs) in the Gmdfb1 mutants. We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7 (GmSKI7). Additionally, GmDFB1 interacts with the PIWI domain of ARGONAUTE 1 (GmAGO1) to inhibit the cleavage efficiency on the target genes of sRNAs. The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development. This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.
Collapse
Affiliation(s)
- Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuang Cheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shiyu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Zhao X, Li Y, Zhang MM, He X, Ahmad S, Lan S, Liu ZJ. Research advances on the gene regulation of floral development and color in orchids. Gene 2023; 888:147751. [PMID: 37657689 DOI: 10.1016/j.gene.2023.147751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Orchidaceae is one of the largest monocotyledon families and contributes significantly to worldwide biodiversity, with value in the fields of landscaping, medicine, and ecology. The diverse phenotypes and vibrant colors of orchid floral organs make them excellent research objects for investigating flower development and pigmentation. In recent years, a number of orchid genomes have been published, laying the molecular foundation for revealing flower development and color presentation. In this article, we review transcription factors, the structural genes responsible for the floral pigment synthesis pathways, the molecular mechanisms of flower morphogenesis, and the potential relationship between flower type and flower color. This study provides a theoretical reference for the research on molecular mechanisms related to flower morphogenesis and color presentation, genetic improvement, and new variety creation in orchids.
Collapse
Affiliation(s)
- Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Shaheen N, Ahmad S, Alghamdi SS, Rehman HM, Javed MA, Tabassum J, Shao G. CRISPR-Cas System, a Possible "Savior" of Rice Threatened by Climate Change: An Updated Review. RICE (NEW YORK, N.Y.) 2023; 16:39. [PMID: 37688677 PMCID: PMC10492775 DOI: 10.1186/s12284-023-00652-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/11/2023]
Abstract
Climate change has significantly affected agriculture production, particularly the rice crop that is consumed by almost half of the world's population and contributes significantly to global food security. Rice is vulnerable to several abiotic and biotic stresses such as drought, heat, salinity, heavy metals, rice blast, and bacterial blight that cause huge yield losses in rice, thus threatening food security worldwide. In this regard, several plant breeding and biotechnological techniques have been used to raise such rice varieties that could tackle climate changes. Nowadays, gene editing (GE) technology has revolutionized crop improvement. Among GE technology, CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) system has emerged as one of the most convenient, robust, cost-effective, and less labor-intensive system due to which it has got more popularity among plant researchers, especially rice breeders and geneticists. Since 2013 (the year of first application of CRISPR/Cas-based GE system in rice), several trait-specific climate-resilient rice lines have been developed using CRISPR/Cas-based GE tools. Earlier, several reports have been published confirming the successful application of GE tools for rice improvement. However, this review particularly aims to provide an updated and well-synthesized brief discussion based on the recent studies (from 2020 to present) on the applications of GE tools, particularly CRISPR-based systems for developing CRISPR rice to tackle the current alarming situation of climate change, worldwide. Moreover, potential limitations and technical bottlenecks in the development of CRISPR rice, and prospects are also discussed.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia.
| | - Salem S Alghamdi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz Mamoon Rehman
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, National Rice Research Institute, 310006, Hangzhou, China.
- Zhejiang Lab, 310006, Hangzhou, China.
| |
Collapse
|
8
|
Yu H, Zhang Y, Fang J, Yang X, Zhang Z, Wang F, Wu T, Khan MHU, Bhat JA, Jiang Y, Wang Y, Feng X. GmUFO1 Regulates Floral Organ Number and Shape in Soybean. Int J Mol Sci 2023; 24:ijms24119662. [PMID: 37298613 DOI: 10.3390/ijms24119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The UNUSUAL FLORAL ORGANS (UFO) gene is an essential regulatory factor of class B genes and plays a vital role in the process of inflorescence primordial and flower primordial development. The role of UFO genes in soybean was investigated to better understand the development of floral organs through gene cloning, expression analysis, and gene knockout. There are two copies of UFO genes in soybean and in situ hybridization, which have demonstrated similar expression patterns of the GmUFO1 and GmUFO2 genes in the flower primordium. The phenotypic observation of GmUFO1 knockout mutant lines (Gmufo1) showed an obvious alteration in the floral organ number and shape and mosaic organ formation. By contrast, GmUFO2 knockout mutant lines (Gmufo2) showed no obvious difference in the floral organs. However, the GmUFO1 and GmUFO2 double knockout lines (Gmufo1ufo2) showed more mosaic organs than the Gmufo1 lines, in addition to the alteration in the organ number and shape. Gene expression analysis also showed differences in the expression of major ABC function genes in the knockout lines. Based on the phenotypic and expression analysis, our results suggest the major role of GmUFO1 in the regulation of flower organ formation in soybeans and that GmUFO2 does not have any direct effect but might have an interaction role with GmUFO1 in the regulation of flower development. In conclusion, the present study identified UFO genes in soybean and improved our understanding of floral development, which could be useful for flower designs in hybrid soybean breeding.
Collapse
Affiliation(s)
- Huimin Yu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Junling Fang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fawei Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Hafeez Ullah Khan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | | | - Yu Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xianzhong Feng
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|