1
|
Wang X, Li L, Liu D, Jin Y, Zhao X, Li S, Hou R, Guan Z, Ma W, Zheng J, Lv M, Shi M. LILRB4 as a novel immunotherapeutic target for multiple diseases. Biochem Pharmacol 2025; 233:116762. [PMID: 39842553 DOI: 10.1016/j.bcp.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Immune checkpoints are critical for maintaining autoimmune homeostasis and are implicated in various autoimmune diseases, with their significance increasingly recognized. Investigating the functions and mechanisms of these checkpoints is essential for the development of more effective treatments. Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4) stands out as a unique immune checkpoint, with limited expression in most normal tissues but prominent presence in various hematological and solid tumors. It is also expressed on numerous immune and stromal cells, functioning as both a "Tumor Immune Checkpoint" and a "Tumor Stromal Immune Checkpoint." Due to its distinct expression profile, LILRB4 plays a pivotal role in tumors, autoimmune diseases, allergic reactions, and the maintenance of immune homeostasis during transplantation and pregnancy. A thorough understanding of its ligands, functions, mechanisms, and ongoing therapeutic strategies targeting LILRB4 will be crucial for the development of advanced therapeutic options. This review examines LILRB4 expression and function across multiple diseases and discusses therapeutic approaches targeting LILRB4 in various contexts. Additionally, the potential of combining current drugs with LILRB4-targeted therapies is explored. Challenges in developing LILRB4-targeting drugs are also addressed, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Lanying Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Ming Lv
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou, Zhejiang, PR China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
2
|
Pallathadka H, Khaleel AQ, Hjazi A, Kumar A, Aloraibi F, Kadhum WR, Pramanik A, Hamzah HF, Mohammed SK, Mustafa YF. Decoding immune tolerance in infertility: Exploring immune pathways and non-coding RNAs as pioneering biomarkers and therapeutic targets. Hum Immunol 2025; 86:111264. [PMID: 39978249 DOI: 10.1016/j.humimm.2025.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Infertility, impacting a significant number of couples, is characterized by the failure to conceive after one year of consistent, unprotected sexual intercourse. It is multifactorial, with etiological contributors including ovulatory dysfunction, male reproductive anomalies, and tubal patency issues. Approximately 15% of infertility cases are classified as "unexplained," highlighting the complexity of this condition. Lifestyle determinants such as obesity and smoking further complicate reproductive outcomes, while infertility can also indicate underlying chronic health conditions. A specialized category, immune infertility, arises from a breakdown of immunological tolerance, an essential aspect for conception and the maintenance of pregnancy. The role of various immunological components, including immune cells, cytokines, chemokines, factors like HLA-G, etc., is pivotal in this context. Moreover, non-coding RNAs (ncRNAs) have emerged as critical regulators of immune tolerance within the reproductive axis. This review synthesizes the complex immunological pathways vital for successful implantation and the early stages of pregnancy alongside the regulatory roles of ncRNAs in these processes. Offering an integrated view of molecular and immunological interactions associated with infertility seeks to enhance our understanding of potential strategies to facilitate successful conception and sustain early pregnancy.
Collapse
Affiliation(s)
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Farah Aloraibi
- Department of Density, Al-Manara College for Medical Sciences, Maysan, Iraq.
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq; Advanced Research Center, Kut University College, Kut 52001, Wasit, Iraq.
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| | - Saad Khudhur Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
3
|
Wang T, Sun L, Li M, Zhang Y, Huang L. Transcriptomics reveals preterm birth risk: identification and validation of key genes in monocytes. BMC Pregnancy Childbirth 2025; 25:174. [PMID: 39962466 PMCID: PMC11834648 DOI: 10.1186/s12884-025-07293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Preterm birth (PTB) is a leading cause of neonatal mortality and long-term disability worldwide. However, the molecular mechanisms underlying PTB remain incompletely understood, and the etiology of many PTB cases is still largely unexplained. Due to their close association with PTB, monocytes serve as an ideal matrix for identifying peripheral biomarkers predictive of preterm birth risk. OBJECTIVE This study aims to identify and validate biomarkers that could predict PTB, improving clinical diagnostic accuracy and enhancing preventive measures against PTB. METHODS This study conducted a comprehensive transcriptomic analysis of monocytes obtained from PTB patients (gestational age = 28-36 weeks) and age-matched healthy controls (HC, gestational age = 37+ 1-41+ 4 weeks). Blood samples were collected within 30 min of hospital admission and prior to labor initiation to ensure consistency. We further validated the findings after screening for potential biomarkers using quantitative real-time PCR (qPCR). While the sample size was relatively small, this study provides foundational evidence supporting the role of CXCL3 and IL-6 as biomarkers for PTB, laying a framework for future prospective research. RESULTS We identified 295 significantly differentially expressed genes compared to the control group, and Weighted Gene Co-expression Network Analysis (WGCNA) further revealed genes significantly associated with PTB. These genes are involved in immune pathways such as rheumatoid arthritis, influenza A, and the MAPK signaling pathway. Machine learning analysis and qPCR validation identified two essential genes-CXCL3 and IL-6. Based on these two genes, the diagnostic model achieved an AUC value of 1 in the discovery cohort, distinguishing PTB patients from healthy controls. CONCLUSION The immune responses observed in peripheral blood mononuclear cells (PBMCs) may be closely related to the mechanisms underlying PTB. Monocyte-derived genes CXCL3 and IL-6 are promising biomarkers for predicting PTB risk, offering new diagnostic tools for clinical practice. These findings have the potential to enhance PTB prevention and management strategies.
Collapse
Affiliation(s)
- TianQi Wang
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China
| | - Lu Sun
- Wuxi Mental Health Center, The Affiliated Mental Health Center of Jiangnan University, Wuxi, 214151, Jiangsu, China
| | - Meng Li
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China
| | - YaoZhong Zhang
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China
| | - Lu Huang
- Department of Women Health Care, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Wang Z, Zhang L, Liu X, Xu L. The role of reproductive tract microbiota in gynecological health and diseases. J Reprod Immunol 2025; 167:104418. [PMID: 39700680 DOI: 10.1016/j.jri.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
The reproductive tract, as a lumen connected to the outside world, its microbial community is influenced by various factors. The changes in its microbiome are closely related to women's health. The destruction of the micro ecological environment will lead to various infections, such as Bacterial vaginosis, sexually transmitted infections, adverse pregnancy outcomes, infertility and tumors. In recent years, with the continuous development and progress of molecular biology, research on reproductive tract microbiota has become a clinical hotspot. The reproductive tract microbiota is closely related to the occurrence and development of female reproductive tract diseases such as vaginitis, pelvic inflammation, PCOS, cervical lesions, and malignant tumors. This article reviews the research on the relationship between vaginal microbiota and female reproductive tract diseases, in order to provide theoretical basis for the prevention and treatment of female reproductive tract diseases.
Collapse
Affiliation(s)
- Zhunan Wang
- Department of gynaecology, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Liyu Zhang
- Department of gynaecology, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Xin Liu
- Department of gynaecology and obstetrics, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Lan Xu
- Department of gynaecology and obstetrics, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China.
| |
Collapse
|
5
|
Di Gennaro F, Guido G, Frallonardo L, Pennazzi L, Bevilacqua M, Locantore P, Vitagliano A, Saracino A, Cicinelli E. Chronic Endometritis and Antimicrobial Resistance: Towards a Multidrug-Resistant Endometritis? An Expert Opinion. Microorganisms 2025; 13:197. [PMID: 39858965 PMCID: PMC11767291 DOI: 10.3390/microorganisms13010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic endometritis (CE) is a persistent inflammatory condition of the endometrium characterized by abnormal infiltration of plasma cells into the endometrial stroma. Frequently associated with repeated implantation failure, recurrent pregnancy loss, and infertility, CE significantly impacts women's health, contributing to conditions such as abnormal uterine bleeding and endometriosis. Treatment typically involves antibiotic therapy; however, the efficacy of these treatments is increasingly compromised by the rise of antimicrobial resistance (AMR). This paper examines the critical links between AMR and CE, proposing strategies to enhance clinical management and optimize treatment outcomes.
Collapse
Affiliation(s)
- Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Piazza Giulio Cesare n. 11, Cap 70124 Bari, Italy; (F.D.G.); (G.G.); (A.S.)
| | - Giacomo Guido
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Piazza Giulio Cesare n. 11, Cap 70124 Bari, Italy; (F.D.G.); (G.G.); (A.S.)
| | - Luisa Frallonardo
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Piazza Giulio Cesare n. 11, Cap 70124 Bari, Italy; (F.D.G.); (G.G.); (A.S.)
| | - Laura Pennazzi
- Studio Ostetrico/Nutrizionale DeaLuce, Cap 00168 Rome, Italy;
| | - Miriana Bevilacqua
- Clinic of Obstetrics & Gynaecology, University of “Aldo Moro”, Cap 70124 Bari, Italy; (M.B.); (A.V.); (E.C.)
| | - Pietro Locantore
- Unit of Endocrinology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico “A. Gemelli” IRCCS, Cap 00168 Rome, Italy;
| | - Amerigo Vitagliano
- Clinic of Obstetrics & Gynaecology, University of “Aldo Moro”, Cap 70124 Bari, Italy; (M.B.); (A.V.); (E.C.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Piazza Giulio Cesare n. 11, Cap 70124 Bari, Italy; (F.D.G.); (G.G.); (A.S.)
| | - Ettore Cicinelli
- Clinic of Obstetrics & Gynaecology, University of “Aldo Moro”, Cap 70124 Bari, Italy; (M.B.); (A.V.); (E.C.)
| |
Collapse
|
6
|
Ye L, Dimitriadis E. Endometrial Receptivity-Lessons from "Omics". Biomolecules 2025; 15:106. [PMID: 39858500 PMCID: PMC11764156 DOI: 10.3390/biom15010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The window of implantation (WOI) is a critical phase of the menstrual cycle during which the endometrial lining becomes receptive and facilitates embryo implantation. Drawing on findings from various branches of "omics", including genomics, epigenomics, transcriptomics, proteomics, lipidomics, metabolomics, and microbiomics, this narrative review aims to (1) discuss mechanistic insights on endometrial receptivity and its implication in infertility; (2) highlight advances in investigations for endometrial receptivity; and (3) discuss novel diagnostic and therapeutic strategies that may improve reproductive outcomes.
Collapse
Affiliation(s)
- Louie Ye
- Reproductive Service Unit, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Evdokia Dimitriadis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
7
|
Yang L, You Y, Li Z, Song Y, Jia X. Successful management of pyoderma gangrenosum after caesarean section: a case report. J OBSTET GYNAECOL 2024; 44:2289546. [PMID: 38149623 DOI: 10.1080/01443615.2023.2289546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/24/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Liqin Yang
- Department of Obstetrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P. R. China
| | - Yiping You
- Department of Obstetrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P. R. China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha, Hunan, P. R. China
| | - Yingxue Song
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaozhou Jia
- Department of Obstetrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P. R. China
| |
Collapse
|
8
|
Sun P, Zhang C, Wang W, Ma H. Mechanism of Endometrial Receptivity Affected by Fibroids. Am J Reprod Immunol 2024; 92:e70022. [PMID: 39625040 PMCID: PMC11613313 DOI: 10.1111/aji.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Fibroids are the most common benign tumors of the female reproductive system. Most patients with fibroids are asymptomatic, but the presence of fibroids can still cause some abnormal clinical symptoms, such as increased menstrual volume, abnormal uterine bleeding, pelvic pain, urinary tract and gastrointestinal tract compression symptoms, etc. The impact of fibroids on pregnancy is worth discussing. At present, it is believed that submucosal myoma and intramural myoma affecting uterine cavity shape affect the pregnancy outcome of patients, while the impact of type III intramural myoma on pregnancy is still controversial. A number of studies have found that in addition to direct contact with the endometrial compression, uterine myoma also affects the endometrial flexibility through other ways. In this review, we summarized the effects of fibroids on endometrial receptivity and discussed in depth the mechanisms of such effects, including secretion of cytokines, changes in endometrial blood flow and angiogenesis, effects on endometrial peristalsis and mechanical stress conduction, changes in uterine microecological environment, and abnormal signal transduction pathways. Understanding the mechanism of endometrial receptivity affected by fibroids is significant for exploring the treatment of fibroids, improving the pregnancy outcome of patients with fibroids and increasing the clinical pregnancy rate.
Collapse
Affiliation(s)
- Ping Sun
- Center of Reproductive Medicine, Weifang People's HospitalWeifangChina
| | - Chunyan Zhang
- Gynecology DepartmentShouguang Hospital of Traditional Chinese MedicineWeifangChina
| | - Weisha Wang
- Gynecology DepartmentShouguang Hospital of Traditional Chinese MedicineWeifangChina
| | - Huagang Ma
- Center of Reproductive Medicine, Weifang People's HospitalWeifangChina
| |
Collapse
|
9
|
Li M, Wang S, Huang H, Li L. Reliable estrogen-related prognostic signature for uterine corpus endometrial carcinoma. Comput Biol Chem 2024; 113:108216. [PMID: 39326337 DOI: 10.1016/j.compbiolchem.2024.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is a predominant gynecological malignancy worldwide. Overdosed estrogen exposure has been widely known as a crucial risk factor for UCEC patients. The purpose of this work is to explore crucial estrogen-related genes (ERGs) in UCEC. METHODS UCEC scRNA-seq data, bulk RNA data, and ERGs were obtained from GEO, TCGA, and Molecular Signature Database, respectively. Differential expression analysis and cross analysis determined the candidate genes, and optimal genes in risk score were obtained after univariate Cox regression analysis, LASSO Cox regression analysis, and multivariate Cox regression analysis. The functional information was revealed by GO, KEGG, and GSVA enrichment analyses. CCK8 assay was used to detect the drug sensitivity. RESULTS After cross analysis of the differentially expressed genes and the 8734 ERGs, 86 differentially expressed ERGs were identified in UCEC, which were significantly enriched in some immune related pathways and microbiota related pathways. Of them, the most optimal 8 ERGs were obtained to build prognostic risk score, including GAL, PHGDH, SLC7A2, HNMT, CLU, AREG, MACC1, and HMGA1. The risk score could reliably predict patient prognosis, and high-risk patients had worse prognosis. Higher HMGA1 gene expression exhibited higher sensitivity to Osimertinib. CONCLUSIONS Predictive risk score based on 8 ERGs exhibited excellent prognostic value in UCEC patients, and high-risk patients had inferior survival. UCEC patients with distinct prognoses showed different tumor immune microenvironment.
Collapse
Affiliation(s)
- Mojuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 511500, China; Department of Obstetrics and Gynecology, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528000, China
| | - Shuai Wang
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511500, China
| | - Hao Huang
- Department of Obstetrics and Gynecology, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528000, China
| | - Li Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 511500, China; Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511500, China.
| |
Collapse
|
10
|
Jordan MM, Amabebe E, Khanipov K, Taylor BD. Scoping Review of Microbiota Dysbiosis and Risk of Preeclampsia. Am J Reprod Immunol 2024; 92:e70003. [PMID: 39440917 PMCID: PMC11501047 DOI: 10.1111/aji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Limited studies have investigated the role of the microbiota in hypertensive disorders of pregnancy (HDP), particularly preeclampsia, which often results in preterm birth. We evaluated 23 studies that explored the relationship between gut, vaginal, oral, or placental microbiotas and HDP. Scopus, ProQuest Health Research Premium Collection, ProQuest Nursing & Allied Health Database, EBSCO, and Ovid were searched for relevant literature. Majority (18) of studies focused on the gut microbiota, and far fewer examined the oral cavity (3), vagina (3), and placenta (1). One study examined the gut, oral, and vaginal microbiotas. The consensus highlights a potential role for microbiota dysbiosis in preeclampsia and HDP. Especially in the third trimester, preeclampsia is associated with gut dysbiosis-deficient in beneficial species of Akkermansia, Bifidobacterium, and Coprococcus but enriched with pathogenic Campylobacterota and Candidatus Saccharibacteria, with low community α-diversity. Similarly, the preeclamptic vaginal and oral microbiotas are enriched with bacterial vaginosis and periodontal disease-associated species, respectively. The trend is also observed in the placenta, which is colonized by gastrointestinal, respiratory tract, and periodontitis-related pathogens. Consequently, a chronic proinflammatory state that adversely impacts placentation is implicated. These observations however require more mechanistic studies to establish the timing of the preceding immune dysfunction and any causality.
Collapse
Affiliation(s)
- Madeleine M. Jordan
- Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Emmanuel Amabebe
- Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Brandie DePaoli Taylor
- Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
- Department of Population Health and Health Disparities, School of Public and Population Health, Galveston, TX, USA
| |
Collapse
|
11
|
Zambella E, Peruffo B, Guarano A, Inversetti A, Di Simone N. The Hidden Relationship between Intestinal Microbiota and Immunological Modifications in Preeclampsia Pathogenesis. Int J Mol Sci 2024; 25:10099. [PMID: 39337584 PMCID: PMC11432041 DOI: 10.3390/ijms251810099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Preeclampsia is a multifactorial gestational syndrome characterized by increased blood pressure during pregnancy associated with multiorgan involvement. The impact of this disease on maternal and neonatal health is significant, as it can lead to various fetal comorbidities and contribute to the development of maternal comorbidities later in life. Consistent evidence has shown that the microbiota acts as a regulator of the immune system, and it may, therefore, influence the development of preeclampsia by modulating immune factors. This narrative review aims to investigate the role of the immune system in the pathogenesis of preeclampsia and to summarize the most recent literature on the possible link between preeclampsia and alterations in the intestinal microbiota. To this end, we conducted a literature search, aiming to perform a narrative review, on PubMed and Embase from January 1990 to March 2024, focusing on the latest studies that highlight the main differences in microbial composition between patients with and without preeclampsia, as well as the effects of microbial metabolites on the immune system. From the review of 28 studies assessing the intestinal microbiota in preeclamptic women, preeclampsia could be associated with a state of dysbiosis. Moreover, these patients showed higher plasmatic levels of endotoxin, pro-inflammatory cytokines, and T helper 17 cells; however, the findings on specific microbes and metabolites that could cause immune imbalances in preeclampsia are still preliminary.
Collapse
Affiliation(s)
- Enrica Zambella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
| | - Beatrice Peruffo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
| | - Alice Guarano
- Humanitas San Pio X, Via Francesco Nava 31, 20159 Milan, Italy;
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
12
|
Zhang L, Li Q, Huang J, Zou Q, Zou H, Zhang X, Su Y, Li C. Causal associations between gut microbiota and premature rupture of membranes: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1440232. [PMID: 39286243 PMCID: PMC11402717 DOI: 10.3389/fimmu.2024.1440232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Previous study has indicated a potential link between gut microbiota and maternal pregnancy outcomes. However, the causal relationship between gut microbiota and premature rupture of membranes (PROM) remains a topic of ongoing debate. Methods A two-sample Mendelian Randomization (MR) study was used to investigate the relationship between gut microbiota and PROM. Genetic data on gut microbiota was obtained from the MiBioGen consortium's largest genome-wide association study (GWAS) (n=14,306). Genetic data on PROM (3011 cases and 104247 controls) were sourced from publicly available GWAS data from the Finnish National Biobank FinnGen consortium. Various methods including Inverse variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode were utilized to assess the causal relationship by calculating the odd ratio (OR) value and confidence interval (CI). Sensitivity analyses for quality control were performed using MR-Egger intercept tests, Cochran's Q tests, and leave-one-out analyses. Results The IVW method revealed that class Mollicutes (IVW, OR=0.773, 95%CI: 0.61-0.981, pval = 0.034), genus Marvinbryantia (IVW, OR=00.736, 95%CI: 0.555-0.977, pval = 0.034), genus Ruminooccaceae UCG003 (IVW, OR=0.734, 95%CI: 0.568-0.947, pval = 0.017) and phylum Tenericutes (IVW, OR=0.773, 95%CI: 0.566-1.067, pval = 0.034) were associated with a reduced risk of PROM, while genus Collinsella (IVW, OR=1.444, 95%CI: 1.028-2.026, pval = 0.034), genus Intestinibacter (IVW, OR=1.304, 95%CI: 1.047-1.623, pval = 0.018) and genus Turicibacter (IVW, OR=1.282, 95%CI: 1.02-1.611, pval = 0.033) increased the risk of PROM. Based on the other four supplementary methods, six gut microbiota may have a potential effect on PROM. Due to the presence of pleiotropy (pval=0.045), genus Lachnoclostridium should be ruled out. No evidence of horizontal pleiotropy or heterogeneity was found in other microbiota (pval >0.05). Conclusions In this study, we have discovered a causal relationship between the presence of specific probiotics and pathogens in the host and the risk of PROM. The identification of specific gut microbiota associated with PROM through MR studies offers a novel approach to diagnosing and treating this condition, thereby providing a new strategy for clinically preventing PROM.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiafeng Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Amy Medical University), and The Key Laboratory of Tumor Immunopathology, The Ministry of Education of China, Chongqing, China
| | - Qin Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Su
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Zanella R, de Camargo J, Scariot CA, Marques MG. The microbiome effect on the female reproductive performance. Anim Reprod 2024; 21:e20240063. [PMID: 39175996 PMCID: PMC11340800 DOI: 10.1590/1984-3143-ar2024-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 08/24/2024] Open
Abstract
The female reproductive function is coordinated by the endocrine system driven by the hypothalamic-pituitary-gonadal (HPG) axis. While not directly part of the female reproductive system, the gut microbiome plays a crucial role in overall health, including reproductive health. The gut microbiome communicates bidirectionally with the brain via the gut-brain axis, influencing stress levels, mood, and hormonal balance, which can impact reproductive health and fertility. In addition to that, the vaginal and uterine microbiome are directly involved with the reproductive success of farm animals, including female fertility and offspring development. In this paper, we summarize some of the effects of bacterial contamination in the female reproductive tract and their association with reproductive performance in farm animals.
Collapse
Affiliation(s)
- Ricardo Zanella
- Programa de Pós-graduação em BioExperimentação, Escola de Ciências Agrárias Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo, RS, Brasil
| | - Janine de Camargo
- Programa de Pós-graduação em BioExperimentação, Escola de Ciências Agrárias Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo, RS, Brasil
| | - Claudia Almeida Scariot
- Programa de Pós-graduação em BioExperimentação, Escola de Ciências Agrárias Inovação e Negócios, Universidade de Passo Fundo, Passo Fundo, RS, Brasil
| | | |
Collapse
|
14
|
Sokou R, Moschari E, Palioura AE, Palioura AP, Mpakosi A, Adamakidou T, Vlachou E, Theodoraki M, Iacovidou N, Tsartsalis AN. The Impact of Gestational Diabetes Mellitus (GDM) on the Development and Composition of the Neonatal Gut Microbiota: A Systematic Review. Microorganisms 2024; 12:1564. [PMID: 39203408 PMCID: PMC11356352 DOI: 10.3390/microorganisms12081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an important health issue, as it is connected with adverse effects to the mother as well as the fetus. A factor of essence for the pathology of this disorder is the gut microbiota, which seems to have an impact on the development and course of GDM. The role of the gut microbiota on maternal reproductive health and all the changes that happen during pregnancy as well as during the neonatal period is of high interest. The correct establishment and maturation of the gut microbiota is of high importance for the development of basic biological systems. The aim of this study is to provide a systematic review of the literature on the effect of GDM on the gut microbiota of neonates, as well as possible links to morbidity and mortality of neonates born to mothers with GDM. Systematic research took place in databases including PubMed and Scopus until June 2024. Data that involved demographics, methodology, and changes to the microbiota were derived and divided based on patients with exposure to or with GDM. The research conducted on online databases revealed 316 studies, of which only 16 met all the criteria and were included in this review. Research from the studies showed great heterogeneity and varying findings at the level of changes in α and β diversity and enrichment or depletion in phylum, gene, species, and operational taxonomic units in the neonatal gut microbiota of infants born to mothers with GDM. The ways in which the microbiota of neonates and infants are altered due to GDM remain largely unclear and require further investigation. Future studies are needed to explore and clarify these mechanisms.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Eirini Moschari
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexia Eleftheria Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Aikaterini-Pothiti Palioura
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Theodoula Adamakidou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Eugenia Vlachou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece; (T.A.); (E.V.)
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikea “Agios Panteleimon”, 18454 Piraeus, Greece; (E.M.); (A.E.P.); (A.-P.P.); (M.T.)
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Athanasios N. Tsartsalis
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece;
| |
Collapse
|
15
|
Yao H, Chen J, Wang Y, Li Y, Jiang Q. Assessing causal relationships between gut microbiota and abortion: evidence from two sample Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1415730. [PMID: 39050566 PMCID: PMC11266152 DOI: 10.3389/fendo.2024.1415730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Background While some studies have suggested a link between gut microbiota (GM) and abortion, the causal relationship remains unclear. Methods To explore the causal relationship between GM and abortion, including spontaneous abortion (SA) and habitual abortion (HA), we performed a two-sample Mendelian randomization (MR) analysis. We used summary statistics data from MiBioGen and FinnGen for genome-wide association studies (GWAS), with GM data as the exposure variable and abortion data as the outcome variable. Results In the absence of heterogeneity and horizontal pleiotropy, the inverse-variance weighted (IVW) method identified five genetically predicted GM genera linked to the risk of abortions. Lactococcus was negatively correlated with the risk of SA, whereas the Eubacterium fissicatena group was positively correlated with the risk of SA. Genetic predictions of Coprococcus3 and Odoribacter were linked to a reduced risk of HA, while the Eubacterium ruminantium group was associated with an increased risk of HA. Conclusion Our study suggests a genetic causal relationship between specific GM and two types of abortions, improving our understanding of the pathological relationship between GM and abortion.
Collapse
Affiliation(s)
- Hang Yao
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jiahao Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Wang
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuxin Li
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qingling Jiang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
16
|
Li Y, Zhou Z, Liang X, Ding J, He Y, Sun S, Cheng W, Ni Z, Yu C. Gut Microbiota Disorder Contributes to the Production of IL-17A That Exerts Chemotaxis via Binding to IL-17RA in Endometriosis. J Inflamm Res 2024; 17:4199-4217. [PMID: 38974001 PMCID: PMC11225878 DOI: 10.2147/jir.s458928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Endometriosis (EM) is a chronic estrogen-dependent condition characterized by the growth of endometrial-like tissue outside the uterus, posing a significant burden on reproductive-aged women. Previous research has shown a correlation between gut microbiota dysbiosis and interleukin-17A (IL-17A) in EM patients. IL-17A, a promising immunomodulatory molecule, exerts dual roles in human physiology, driving inflammatory diseases. However, the functions and origins of IL-17A in EM remain poorly characterized. Methods Single-cell data analysis was employed to characterize IL-17A activity in EM lesions. Fecal microbiota transplantation was conducted to explore the impact of gut microbiota on EM. Gut microbiota and bile acid metabolism were assessed via 16S rRNA sequencing and targeted metabolomics. Th17 cell proportions were measured using flow cytometry. Results High expression of IL-17 receptor A (IL-17RA) was observed in myeloid cell subpopulations within EM lesions and may be involved in the migration and recruitment of inflammatory cells in lesions. Elevated IL-17A levels were further validated in peritoneal and follicular fluids of EM patients. Dysregulated bile acid levels, particularly elevated chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), were found in the gut and peritoneal fluid of EM mouse models. Additional CDCA administration reduced EM lesions and modulated Th17 cell proportions, while UDCA showed no significant effects. Discussion Our findings shed light on the origins and functions of IL-17A in EM, implicating its involvement in lesion migration and recruitment. Dysregulated bile acid metabolism may contribute to EM pathogenesis, with CDCA exhibiting therapeutic potential.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Zhihao Zhou
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
- Traditional Chinese Medicine Department, No. 929 Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiaolan Liang
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Yalun He
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Wen Cheng
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, the First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Peng Y, Xu Y, Li S, Shao M, Shen Z, Qi W. Mechanism of Vaginal Epithelial Cell Pyroptosis Induced by the NLRP3 Inflammasome in Vulvovaginal Candidiasis. Am J Reprod Immunol 2024; 92:e13893. [PMID: 38958245 DOI: 10.1111/aji.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
PROBLEM Vulvovaginal candidiasis (VVC) is a common mucosal fungal infection, and Candida albicans is the main causative agent. The NLRP3 inflammasome plays an important role in VVC, but the underlying mechanism is unknown. METHOD OF STUDY Vaginal epithelial cells were divided into three groups: control, C. albicans strain SC5314 (wild-type, WT), and WT+ Matt Cooper Compound 950 (MCC950, a specific NLRP3 inhibitor). After human vaginal epithelial cells were pretreated with 1 µmol/L MCC950 for 2 h, C. albicans (MOI = 1) was cocultured with the human vaginal epithelial cells for 12 h. The cell supernatants were collected, LDH was detected, and the IL-1β and IL-18 levels were determined by ELISA. The expression of the pyroptosis-related proteins NLRP3, Caspase-1 p20 and GSDMD was measured by Western blotting analysis. The protein expression of the pyroptosis-related N-terminus of GSDMD (GSDMD-N) was detected by immunofluorescence. RESULTS In this study, we showed that the WT C. albicans strain induced pyroptosis in vaginal epithelial cells, as indicated by the LDH and proinflammatory cytokine levels and the upregulated levels of the pyroptosis-related proteins NLRP3, Caspase-1 p20, and GSDMD-N. MCC950 reversed the changes in the expression of these proteins and proinflammatory cytokines in vaginal epithelial cells. CONCLUSION C. albicans activated the NLRP3 inflammasome to induce vaginal epithelial cell pyroptosis. MCC950 inhibited the NLRP3 inflammasome, reduced vaginal epithelial cell pyroptosis, and decreased the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Yongmei Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Yanan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Sainan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Mingkun Shao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Zijia Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjin Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Acharya G. Integrated functional analysis of endometrial transcriptome, microbiome, and immune cell profiling is needed to dissect mechanisms of uterine pathologies and implantation failure. Acta Obstet Gynecol Scand 2024; 103:1236-1237. [PMID: 38865080 PMCID: PMC11168261 DOI: 10.1111/aogs.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet and Center for Fetal Medicine KarolinskaUniversity HospitalStockholmSweden
- Women's Health and Perinatology Research Group, Department of Clinical MedicineUiT‐The Arctic University of NorwayTromsøNorway
| |
Collapse
|
19
|
Odendaal J, Black N, Bennett PR, Brosens J, Quenby S, MacIntyre DA. The endometrial microbiota and early pregnancy loss. Hum Reprod 2024; 39:638-646. [PMID: 38195891 PMCID: PMC10988105 DOI: 10.1093/humrep/dead274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
The human endometrium is a dynamic entity that plays a pivotal role in mediating the complex interplay between the mother and developing embryo. Endometrial disruption can lead to pregnancy loss, impacting both maternal physical and psychological health. Recent research suggests that the endometrial microbiota may play a role in this, although the exact mechanisms are still being explored, aided by recent technological advancements and our growing understanding of host immune responses. Suboptimal or dysbiotic vaginal microbiota, characterized by increased microbial diversity and reduced Lactobacillus dominance, has been associated with various adverse reproductive events, including miscarriage. However, the mechanisms linking the lower reproductive tract microbiota with pregnancy loss remain unclear. Recent observational studies implicate a potential microbial continuum between the vaginal and endometrial niche in patients with pregnancy loss; however, transcervical sampling of the low biomass endometrium is highly prone to cross-contamination, which is often not controlled for. In this review, we explore emerging evidence supporting the theory that a dysbiotic endometrial microbiota may modulate key inflammatory pathways required for successful embryo implantation and pregnancy development. We also highlight that a greater understanding of the endometrial microbiota, its relationship with the local endometrial microenvironment, and potential interventions remain a focus for future research.
Collapse
Affiliation(s)
- Joshua Odendaal
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, Tommy's National Centre for Miscarriage Research, University of Warwick, Coventry, UK
- University Hospitals Coventry & Warwickshire, Coventry, UK
| | - Naomi Black
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, Tommy's National Centre for Miscarriage Research, University of Warwick, Coventry, UK
- University Hospitals Coventry & Warwickshire, Coventry, UK
| | - Phillip R Bennett
- Tommy’s National Centre for Miscarriage Research, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jan Brosens
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, Tommy's National Centre for Miscarriage Research, University of Warwick, Coventry, UK
- University Hospitals Coventry & Warwickshire, Coventry, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, Tommy's National Centre for Miscarriage Research, University of Warwick, Coventry, UK
- University Hospitals Coventry & Warwickshire, Coventry, UK
| | - David A MacIntyre
- Tommy’s National Centre for Miscarriage Research, Imperial College London, London, UK
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
20
|
Gao H, Liu Q, Wang X, Li T, Li H, Li G, Tan L, Chen Y. Deciphering the role of female reproductive tract microbiome in reproductive health: a review. Front Cell Infect Microbiol 2024; 14:1351540. [PMID: 38562966 PMCID: PMC10982509 DOI: 10.3389/fcimb.2024.1351540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome.
Collapse
Affiliation(s)
- Hong Gao
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Li
- Department of Obstetrics, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynaecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Genlin Li
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingling Tan
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| |
Collapse
|
21
|
Cristodoro M, Zambella E, Fietta I, Inversetti A, Di Simone N. Dietary Patterns and Fertility. BIOLOGY 2024; 13:131. [PMID: 38392349 PMCID: PMC10886842 DOI: 10.3390/biology13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Diet has a key role in the reproductive axis both in males and females. This review aims to analyze the impacts of different dietary patterns on fertility. It appears that the Mediterranean diet has a predominantly protective role against infertility, while the Western diet seems to be a risk factor for infertility. Moreover, we focus attention also on dietary patterns in different countries of the World (Middle Eastern diet, Asian diet). In particular, when analyzing single nutrients, a diet rich in saturated fatty acids, cholesterol, animal proteins, and carbohydrates with high glycemic index is highly associated with male and female infertility. Finally, we evaluate the effects of vegetarian, vegan, and ketogenic diets on fertility, which seem to be still unclear. We believe that comprehension of the molecular mechanisms involved in infertility will lead to more effective and targeted treatments for infertile couples.
Collapse
Affiliation(s)
- Martina Cristodoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Enrica Zambella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Ilaria Fietta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milano, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
22
|
Fasano A, Matera M. Probiotics to Prevent Celiac Disease and Inflammatory Bowel Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:95-111. [PMID: 39060733 DOI: 10.1007/978-3-031-58572-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The incidence of chronic inflammatory diseases (CIDs) is dramatically increasing in the developed world, resulting in an increased burden of disease in childhood. Currently, there are limited effective strategies for treating or preventing these conditions. To date, myriads of cross-sectional studies have described alterations in the composition of the gut microbiota in a variety of disease states, after the disease has already occurred. We suggest that to mechanically link these microbiome changes with disease pathogenesis, a prospective cohort design is needed to capture changes that precede or coincide with disease onset and symptoms. In addition, these prospective studies must integrate microbiological, metagenomic, meta transcriptomic and metabolomic data with minimal and standardized clinical and environmental metadata that allow to correctly compare and interpret the results of the analysis of the human microbiota in order to build a system-level model of the interactions between the host and the development of the disease. The creation of new biological computational models thus constructed will allow us to finally move from the detection of simple elements of "association" to the identification of elements of real "causality" allowing to provide a mechanistic approach to the exploration of the development of CIDs.This can only be done when these diseases are studied as complex biological networks. In this chapter we discuss the current knowledge regarding the contribution of the microbiome to CID in childhood, focusing on celiac disease and inflammatory bowel disease, with the overall aim of identifying pathways to shift research from descriptive to mechanistic approaches. We then examine how some components of the microbiota, through epigenetic reprogramming, can start the march from genetic predisposition to clinical expression of CIDs, thus opening up new possibilities for intervention, through microbiota therapy targeting the manipulation of the composition and function of the microbiota, for future applications of precision medicine and primary prevention.
Collapse
Affiliation(s)
- Alessio Fasano
- Research Centre for Immunology and Mucosal Biology and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children - Harvard Medical School, Boston, USA, MA.
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition, Mass General for Children - Harvard Medical School, Boston, MA, USA.
| | - Mariarosaria Matera
- Neonatologist, Neurodevelopmental Clinics and Pediatric Clinical Microbiomic - Misericordia Hospital, Grosseto, Italy
| |
Collapse
|
23
|
Marano G, Traversi G, Gaetani E, Gasbarrini A, Mazza M. Gut microbiota in women: The secret of psychological and physical well-being. World J Gastroenterol 2023; 29:5945-5952. [PMID: 38131001 PMCID: PMC10731147 DOI: 10.3748/wjg.v29.i45.5945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
The gut microbiota works in unison with the host, promoting its health. In particular, it has been shown to exert protective, metabolic and structural functions. Recent evidence has revealed the influence of the gut microbiota on other organs such as the central nervous system, cardiovascular and the endocrine-metabolic systems and the digestive system. The study of the gut microbiota is outlining new and broader frontiers every day and holds enormous innovation potential for the medical and pharmaceutical fields. Prevention and treatment of specific women's diseases involves the need to deepen the function of the gut as a junction organ where certain positive bacteria can be very beneficial to health. The gut microbiota is unique and dynamic at the same time, subject to external factors that can change it, and is capable of modulating itself at different stages of a woman's life, playing an important role that arises from the intertwining of biological mechanisms between the microbiota and the female genital system. The gut microbiota could play a key role in personalized medicine.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Unit of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome 00186, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, CEMAD Digestive Disease Center, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome 00168, Italy
| | - Marianna Mazza
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Unit of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| |
Collapse
|
24
|
Tapilskaya NI, Savicheva AM, Shalepo KV, Budilovskaya OV, Gzgzyan AM, Bespalova ON, Khusnutdinova TA, Krysanova AA, Obedkova KV, Safarian GK. Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility. Int J Mol Sci 2023; 24:ijms24087572. [PMID: 37108732 PMCID: PMC10143846 DOI: 10.3390/ijms24087572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The endometrium has traditionally been considered sterile. Nowadays, active studies are performed on the female upper genital tract microbiota. Bacteria and/or viruses colonizing the endometrium are known to alter its functional properties, including receptivity and embryo implantation. Uterine cavity inflammation caused by microorganisms leads to disrupted cytokine expression, which, in turn, is mandatory for the successful implantation of the embryo. The present study assessed the vaginal and endometrial microbiota composition and its relation to the levels of cytokines produced by the endometrium in reproductive-aged women complaining of secondary infertility of unknown origin. The multiplex real-time PCR assay was applied for vaginal and endometrial microbiota analysis. The quantitative measurement of endometrial α-defensin (DEFa1), transforming growth factor (TGFβ1), and basic fibroblast growth factor (bFGF2) was carried out using the ELISA (Cloud-Clone Corporation (Katy, TX, USA; manufactured in Wuhan, China). A reliable decline in endometrial TGFβ1 and bFGF2 and an increase in DEFa1 were demonstrated in women with idiopathic infertility when compared to fertile patients. However, TGFβ1, bFGF2, and DEFa1 expression correlated reliably only with the presence of Peptostreptococcus spp. and HPV in the uterine cavity. The obtained results highlight the importance of local immune biomarker determination in the assessment of certain bacteria and viruses' significance as causative agents of infertility.
Collapse
Affiliation(s)
- Natalya I Tapilskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Alevtina M Savicheva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Kira V Shalepo
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Olga V Budilovskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Aleksandr M Gzgzyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Olesya N Bespalova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Tatiana A Khusnutdinova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Anna A Krysanova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Kseniia V Obedkova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Galina Kh Safarian
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| |
Collapse
|