1
|
Suresh D, Gunaseelan B, Srinivas AN, Bharadwaj A, Joseph J, Megha, Varughese T, Satish S, Suvarna D, Santhekadur PK, Chidambaram SB, Duseja A, Kumar DP. Green jackfruit flour ameliorates MASH and development of HCC via the AMPK and MAPK signaling pathways in experimental model systems. Sci Rep 2025; 15:12088. [PMID: 40204999 PMCID: PMC11982280 DOI: 10.1038/s41598-025-96944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a serious public health concern. Given the paucity of approved therapeutic strategies for this lifestyle disorder, dietary interventions may prove effective. We evaluated the mechanisms of how green jackfruit flour (JF) ameliorates metabolic-dysfunction-associated steatohepatitis (MASH) and halts the progression to hepatocellular carcinoma (HCC). The study used murine models of MASH and MASH-HCC that closely mimic human MASLD. C57Bl/6 male mice were fed with chow or western diet with normal or sugar water for 12 weeks, then randomized to receive either 5 kcal% green jackfruit flour (JF) or an equal volume of placebo flour (PB). JF significantly reduced body weight, liver injury, and insulin resistance, and alleviated obesity, steatosis, inflammation, fibrosis, and tumor development in WDSW or WDSW/CCl4 mice compared to placebo. Furthermore, JF activated AMPK (AMP-activated protein kinase) and inhibited MAPK (mitogen-activated protein kinase) signaling pathways in MASH and MASH-HCC models, respectively. Sodium propionate treatment, the primary short-chain fatty acid entering the liver from JF's soluble fiber microbial fermentation, further supported these mechanistic insights. Hence, our findings present strong evidence of JF's therapeutic potential in attenuating MASH and MASH-HCC, warranting further investigation of JF's efficacy as a dietary intervention in clinical trials.
Collapse
Affiliation(s)
- Diwakar Suresh
- Department of Biochemistry, CEMR Laboratory, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, Karnataka, India
| | - Bharathwaaj Gunaseelan
- Department of Biochemistry, CEMR Laboratory, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, Karnataka, India
| | - Akshatha N Srinivas
- Department of Biochemistry, CEMR Laboratory, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, Karnataka, India
| | - Amith Bharadwaj
- Department of Biochemistry, CEMR Laboratory, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, Karnataka, India
| | - James Joseph
- God's Own Food Solutions Pvt Ltd, Kochi, 683585, Kerala, India
| | - Megha
- Centre For Ayurveda Biology and Holistic Nutrition, University of Transdisciplinary Health Sciences and Technology, Bangalore, 560064, India
| | - Thomas Varughese
- Department of Surgical Oncology, St. Joseph's Hospital Trust, Manjummel, Kochi, 683501, Kerala, India
| | - Suchitha Satish
- Department of Pathology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Deepak Suvarna
- Department of Gastroenterology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, CEMR Laboratory, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR Laboratory, JSS Medical College, JSS Academy of Higher Education and Research, SS Nagar, Mysuru, 570015, Karnataka, India.
| |
Collapse
|
2
|
Wróblewski M, Wróblewska J, Nuszkiewicz J, Mila-Kierzenkowska C, Woźniak A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules 2024; 29:5310. [PMID: 39598700 PMCID: PMC11596956 DOI: 10.3390/molecules29225310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body's physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes scabiei var. hominis, affects millions globally, particularly in developing regions. The infestation leads to severe itching and skin rashes, triggered by allergic reactions to the mites, their eggs, and feces. Conventional scabies treatments typically involve the use of scabicidal agents, which, although effective, are often associated with adverse side effects and the increasing threat of resistance. In light of these limitations, there is growing interest in the use of medicinal plants as alternative therapeutic options. Medicinal plants, rich in bioactive compounds with antioxidant properties, offer a promising, safer, and potentially more effective approach to treatment. This review explores the role of oxidative stress in scabies pathogenesis and highlights how medicinal plants can mitigate this by reducing inflammation and oxidative damage, thereby alleviating symptoms and improving patient outcomes. Through their natural antioxidant potential, these plants may serve as viable alternatives or complementary therapies in the management of scabies, especially in cases where resistance to conventional treatments is emerging.
Collapse
Affiliation(s)
| | | | | | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
3
|
Sannappa Gowda NG, Shiragannavar VD, Karunakara SH, Veeranna RP, Suvarna D, Kumar DP, Santhekadur PK. Novel role of Quercetin in ameliorating metabolic syndrome via VDR mediated activation of adiponectin/AdipoR2 signaling. Biochem Biophys Rep 2024; 39:101754. [PMID: 39006943 PMCID: PMC11246006 DOI: 10.1016/j.bbrep.2024.101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
A sedentary lifestyle and physical inactivity leads to metabolic syndrome-associated comorbidities involving abdominal obesity, type 2 diabetes, hyperlipidaemia associated Cardiovascular Diseases (CVDs), and Metabolic dysfunction-associated fatty liver disease (MAFLD). In this study, we evaluated the novel hepato/cardio/adipo-protective role of Quercetin via Vitamin D Receptor, and elucidated its underlying mechanisms in reducing lipotoxicity, inflammation and fibrosis in high calorie diet induced metabolic syndrome. Male Swiss albino mice were fed with western diet and sugar water for multiple time intervals. Anti-lipotoxicity, anti-inflammatory, and anti-fibrotic effect of Quercetin was assessed by Oil Red O, H&E and TMS staining at different time points. The lipid profile, mRNA expression of inflammatory markers (TNF- α, IL-1β, IL-6 and MCP-1), fibrotic markers (α-SMA, COL1A1, COL1A2), adiponectin, AdipoR2, and VDR expression levels were measured from RNA pools of adipose, liver and heart tissues. Also, lipid-lowering and anti-steatohepatitic effects of Quercetin was assessed using mouse 3T3-L1 adipocytes, rat H9c2 cardiac cells, and human HepG2 hepatocytes. Our results indicate that, western diet fed mice with Quercetin ameliorated lipid profile and lipotoxicity. Histopathological examination and gene expression data revealed that Quercetin reduced hepatic and cardiac inflammation and fibrosis-associated markers. Interestingly, Quercetin treatment increased the serum levels of adiponectin and mRNA expressions of AdipoR2 and VDR. In-vitro experiments revealed the reduction in lipid accumulation of 3T3-L1 and fatty-acid-treated hepatic and cardiac cells following Quercetin treatment. These findings indicate that Quercetin exhibits a protective role on multiple organs through VDR activation and subsequent Adipo/AdipoR2 signaling in metabolic syndrome associated obesity, hepatic injury, and cardiac dysfunction.
Collapse
Affiliation(s)
- Nirmala G Sannappa Gowda
- Department of Biochemistry, Center of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Varsha D Shiragannavar
- Department of Biochemistry, Center of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Shreyas H Karunakara
- Department of Biochemistry, Center of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | | | - Deepak Suvarna
- Department of Gastroenterology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Divya P Kumar
- Department of Biochemistry, Center of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, Center of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| |
Collapse
|
4
|
Srinivas AN, Suresh D, Vishwanath PM, Satish S, Santhekadur PK, Koka S, Kumar DP. TACE inhibition: a promising therapeutic intervention against AATF-mediated steatohepatitis to hepatocarcinogenesis. Mol Oncol 2024; 18:1940-1957. [PMID: 38558505 PMCID: PMC11306524 DOI: 10.1002/1878-0261.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/03/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis-driven hepatocellular carcinoma (MASH-HCC) is a global clinical challenge for which there is a limited understanding of disease pathogenesis and a subsequent lack of therapeutic interventions. We previously identified that tumor necrosis factor-alpha (TNF-α) upregulated apoptosis antagonizing transcription factor (AATF) in MASH. Here, we investigated the effect of TNF-α converting enzyme (TACE) inhibition as a promising targeted therapy against AATF-mediated steatohepatitis to hepatocarcinogenesis. A preclinical murine model that recapitulates human MASH-HCC was used in the study. C57Bl/6 mice were fed with chow diet normal water (CD) or western diet sugar water (WD) along with a low dose of carbon tetrachloride (CCl4; 0.2 μL·g-1, weekly) for 24 weeks. TACE activity, TNF-α levels, and AATF expression were measured. The mice were treated with the TACE inhibitor Marimastat for 12 weeks, followed by analyses of liver injury, fibrosis, inflammation, and oncogenic signaling. In vitro experiments using stable clones of AATF control and AATF knockdown were also conducted. We found that AATF expression was upregulated in WD/CCl4 mice, which developed severe MASH at 12 weeks and advanced fibrosis with HCC at 24 weeks. WD/CCl4 mice showed increased TACE activity with reduced hepatic expression of sirtuin 1 (Sirt1) and tissue inhibitor of metalloproteinase 3 (Timp3). The involvement of the SIRT1/TIMP3/TACE axis was confirmed by the release of TNF-α, which upregulated AATF, a key molecular driver of MASH-HCC. Interestingly, TACE inhibition by Marimastat reduced liver injury, dyslipidemia, AATF expression, and oncogenic signaling, effectively preventing hepatocarcinogenesis. Furthermore, Marimastat inhibited the activation of JNK, ERK1/2, and AKT, which are key regulators of tumorigenesis in WD/CCl4 mice and in AATF control cells, but had no effect on AATF knockdown cells. This study shows that TACE inhibition prevents AATF-mediated inflammation, fibrosis, and oncogenesis in MASH-HCC, offering a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Akshatha N. Srinivas
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Diwakar Suresh
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Prashant M. Vishwanath
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Suchitha Satish
- Department of Pathology, JSS Medical College and HospitalJSS Academy of Higher Education and ResearchMysuruIndia
| | - Prasanna K. Santhekadur
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of PharmacyTexas A&M UniversityKingsvilleTXUSA
| | - Divya P. Kumar
- Department of Biochemistry, CEMR Lab, JSS Medical CollegeJSS Academy of Higher Education and ResearchMysuruIndia
| |
Collapse
|
5
|
Srinivas AN, Suresh D, Chidambaram SB, Santhekadur PK, Kumar DP. Apoptosis antagonizing transcription factor-mediated liver damage and inflammation to cancer: Therapeutic intervention by curcumin in experimental metabolic dysfunction associated steatohepatitis-hepatocellular carcinoma. J Cell Physiol 2024; 239:135-151. [PMID: 37942831 DOI: 10.1002/jcp.31151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
In tandem with the expanding obesity pandemic, the prevalence of metabolic dysfunction associated steatohepatitis (MASH, formerly known as NASH)- driven hepatocellular carcinoma (HCC) is predicted to rise globally, creating a significant need for therapeutic interventions. We previously identified the upregulation of apoptosis antagonizing transcription factor (AATF), which is implicated in facilitating the progression from MASH to HCC. The objective of this study was to examine whether the intervention of curcumin could alleviate AATF-mediated MASH, inhibit tumor growth, and elucidate the underlying mechanism. A preclinical murine model mimicking human MASH-HCC was employed, subjecting mice to either a chow diet normal water (CDNW) or western diet sugar water (WDSW) along with very low dose of carbon tetrachloride (CCl4 - 0.2 μL/g, weekly). Mice receiving curcumin (CUR) alongside WDSW/CCl4 exhibited significant improvements, including reduced liver enzymes, dyslipidemia, steatosis, inflammation, and hepatocellular ballooning. Curcumin treatment also suppressed hepatic expression of inflammatory, fibrogenic, and oncogenic markers. Of note, there was a significant reduction in the expression of AATF upon curcumin treatment in WDSW/CCl4 mice and human HCC cells. In contrast, curcumin upregulated Kruppel-like factor 4 (KLF4) in MASH liver and HCC cells, which is known to downregulate sp1 (specificity protein-1) expression. Thus, curcumin treatment effectively inhibited the progression of MASH to HCC by downregulating the expression of AATF via the KLF4-Sp1 signaling pathway. These preclinical findings establish a novel molecular connection between curcumin and AATF in reducing hepatocarcinogenesis, and provide a strong rationale for the development of curcumin as a viable treatment for MASH-HCC in humans.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|