1
|
Xia G, Yang L, Li B, Wang Q, Huang L, Tian X, Zhang G. Genome-Wide Identification and Expression Profiling of Odorant-Binding Protein Genes in the Bean Flower Thrips Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae). INSECTS 2025; 16:212. [PMID: 40003841 PMCID: PMC11856683 DOI: 10.3390/insects16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Megalurothrips usitatus is an economically important vegetable pest. Because of the growing demand for reducing pesticide use on vegetables, new environmentally friendly strategies for controlling M. usitatus are urgently needed. Insect odorant-binding proteins are prospective targets for screening environmentally friendly odorant attractants for pest control. However, very little is known about OBP genes in M. usitatus. Here, we identified 14 OBPs in the M. usitatus genome using HMMER and BLAST. The chromosomal location showed that these OBPs were widely distributed across eight chromosomes. The analysis of the gene and protein structure characteristics of OBPs in M. usitatus revealed substantial diversity within the OBP gene family. The spatiotemporal expression profiles showed that ten out of 14 MusiOBPs displayed male biased expression, which were highly expressed in antennae, suggesting that they may play a crucial role in the recognition of host plant volatiles and thrips aggregation pheromones. Notably, only MusiOBP8 was significantly higher expressed in female adults, indicating a potential involvement in reproduction. Moreover, MusiOBP7 and MusiOBP13 were highly expressed in the pupae, indicating their possible role in immune responses. These results provide an important foundation for further exploration of the functions of the OBPs in M. usitatus.
Collapse
Affiliation(s)
- Gen Xia
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lang Yang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Boliao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Qinli Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lifei Huang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, China;
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| |
Collapse
|
2
|
Xu Z, Zhang G, Qiu Y, Luo Z, Cai X, Li Z, Bian L, Fu N, Zhou L, Magsi FH, Chen Z, Zhang X, Xiu C. Mixture of Synthetic Plant Volatiles Attracts More Stick Tea Thrips Dendrothrips minowai Priesner (Thysanoptera: Thripidae) and the Application as an Attractant in Tea Plantations. PLANTS (BASEL, SWITZERLAND) 2024; 13:1944. [PMID: 39065471 PMCID: PMC11280358 DOI: 10.3390/plants13141944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The stick tea thrip (Dendrothrips minowai) is one of the most serious sucking pests of tea plants (Camellia sinensis) in China, North Korea, and Japan. Plant volatile lures are widely used for both monitoring and mass trapping. Previously, we demonstrated that sticky traps baited with p-anisaldehyde, eugenol, farnesene, or 3-methyl butanal captured significantly more D. minowai in tea plantations, with p-anisaldehyde notably capturing the most. In this study, we showed that D. minowai adults exhibited significantly higher attraction to mixtures of p-anisaldehyde, eugenol, and farnesene compared to an equivalent dose of p-anisaldehyde alone in H-tube olfactometer assays under laboratory conditions. Moreover, in field experiments conducted in 2022, rubber septa impregnated with a ternary blend of p-anisaldehyde, eugenol, and farnesene (at 3-4.5 mg and a ratio of 3:1:1) captured the highest number of adults on sticky traps, outperforming traps bailed with individual components or a solvent control over two weeks. Significantly, the mass trapping strategy employing these lures achieved control efficacies ranging from 62.8% to 70.7% when compared to traps without attractant, which achieved control efficacies of only 14.2% to 35.4% across three test sites in 2023. These results indicate that the combination of p-anisaldehyde, eugenol, and farnesene exhibits an additive or synergistic effect on D. minowai. In conclusion, our findings establish a theoretical framework and provide practical technological support for integrating attractant-based strategies into comprehensive thrips management strategies.
Collapse
Affiliation(s)
- Zhengwei Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guowei Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
| | - Yan Qiu
- Weifang Natural Resources and Planning Bureau, Weifang 261000, China;
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Nanxia Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fida Hussain Magsi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoming Zhang
- National Key Laboratory for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Chunli Xiu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Z.X.); (G.Z.); (Z.L.); (X.C.); (Z.L.); (L.B.); (N.F.); (L.Z.); (F.H.M.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
3
|
Yingning L, Shuhua W, Wenting D, Miao M, Ying W, Rong Z, Liping B. Chromosome-level genome assembly of Odontothrips loti Haliday (Thysanoptera: Thripidae). Sci Data 2024; 11:451. [PMID: 38704405 PMCID: PMC11069530 DOI: 10.1038/s41597-024-03289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
As the predominant pest of alfalfa, Odontothrips loti Haliday causes great damages over the major alfalfa-growing regions of China. The characteristics of strong mobility and fecundity make them develop rapidly in the field and hard to be controlled. There is a shortage of bioinformation and limited genomic resources available of O. loti for us to develop novel pest management strategies. In this study, we constructed a chromosome-level reference genome assembly of O. loti with a genome size of 346.59 Mb and scaffold N50 length of 18.52 Mb, anchored onto 16 chromosomes and contained 20128 genes, of which 93.59% were functionally annotated. The results of 99.20% complete insecta_odb10 genes in BUSCO analysis, 91.11% short reads mapped to the ref-genome, and the consistent tendency among the thrips in the distribution of gene length reflects the quality of genome. Our study provided the first report of genome for the genus Odontothrips, which offers a genomic resource for further investigations on evolution and molecular biology of O. loti, contributing to pest management.
Collapse
Affiliation(s)
- Luo Yingning
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Shuhua
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Dai Wenting
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Miao Miao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wang Ying
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhang Rong
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ban Liping
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Li WZ, Kang WJ, Zhou JJ, Shang SQ, Shi SL. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae). BMC Genomics 2023; 24:781. [PMID: 38102559 PMCID: PMC10724985 DOI: 10.1186/s12864-023-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Su-Qin Shang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Walker III WB, Cattaneo AM, Stout JL, Evans ML, Garczynski SF. Chemosensory Receptor Expression in the Abdomen Tip of the Female Codling Moth, Cydia pomonella L. (Lepidoptera: Tortricidae). INSECTS 2023; 14:948. [PMID: 38132621 PMCID: PMC10743790 DOI: 10.3390/insects14120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
In insects, the chemical senses influence most vital behaviors, including mate seeking and egg laying; these sensory modalities are predominantly governed by odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs). The codling moth, Cydia pomonella, is a global pest of apple, pear, and walnut, and semiochemically based management strategies limit the economic impacts of this species. The previous report of expression of a candidate pheromone-responsive OR in female codling moth ovipositor and pheromone glands raises further questions about the chemosensory capacity of these organs. With an RNA-sequencing approach, we examined chemoreceptors' expression in the female codling moth abdomen tip, sampling tissues from mated and unmated females and pupae. We report 37 ORs, 22 GRs, and 18 IRs expressed in our transcriptome showing overlap with receptors expressed in adult antennae as well as non-antennal candidate receptors. A quantitative PCR approach was also taken to assess the effect of mating on OR expression in adult female moths, revealing a few genes to be upregulated or downregulating after mating. These results provide a better understanding of the chemosensory role of codling moth female abdomen tip organs in female-specific behaviors. Future research will determine the function of specific receptors to augment current semiochemical-based strategies for codling moth management.
Collapse
Affiliation(s)
- William B. Walker III
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| | - Alberto M. Cattaneo
- Chemical Ecology Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma (Campus Alnarp), 234 56 Skåne, Sweden;
| | - Jennifer L. Stout
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| | - MacKenzie L. Evans
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| | - Stephen F. Garczynski
- Temperate Tree Fruit and Vegetable Research Unit, United States Department of Agriculture—Agricultural Research Service, Wapato, WA 98951, USA; (J.L.S.); (M.L.E.)
| |
Collapse
|
6
|
Liu L, Wang F, Yang W, Yang H, Huang Q, Yang C, Hui W. Molecular and Functional Characterization of Pheromone Binding Protein 2 from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Int J Mol Sci 2023; 24:16925. [PMID: 38069247 PMCID: PMC10706763 DOI: 10.3390/ijms242316925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Pheromone-binding proteins (PBPs) play important roles in binding and transporting sex pheromones. However, the PBP genes identified in coleopteran insects and their information sensing mechanism are largely unknown. Cyrtotrachelus buqueti (Coleoptera: Curculionidae) is a major insect pest of bamboo plantations. In this study, a novel PBP gene, CbuqPBP2, from C. buqueti was functionally characterized. CbuqPBP2 was more abundantly expressed in the antennae of both sexes than other body parts, and its expression level was significantly male-biased. Fluorescence competitive binding assays showed that CbuqPBP2 exhibited the strongest binding affinity to dibutyl phthalate (Ki = 6.32 μM), followed by styrene (Ki = 11.37 μM), among twelve C. buqueti volatiles. CbuqPBP2, on the other hand, showed high binding affinity to linalool (Ki = 10.55), the main volatile of host plant Neosinocalamus affinis. Furthermore, molecular docking also demonstrated the strong binding ability of CbuqPBP2 to dibutyl phthalate, styrene, and linalool, with binding energy values of -5.7, -6.6, and -6.0 kcal/mol, respectively, and hydrophobic interactions were the prevailing forces. The knockdown of CbuqPBP2 expression via RNA interference significantly reduced the electroantennography (EAG) responses of male adults to dibutyl phthalate and styrene. In conclusion, these results will be conducive to understanding the olfactory mechanisms of C. buqueti and promoting the development of novel strategies for controlling this insect pest.
Collapse
Affiliation(s)
| | | | | | - Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (F.W.); (W.Y.); (Q.H.); (C.Y.); (W.H.)
| | | | | | | |
Collapse
|
7
|
Xiao G, Lu J, Yang Z, Fu H, Hu P. A Study of Adult Olfactory Proteins of Primitive Ghost Moth, Endoclita signifer (Lepidoptera, Hepialidae). Life (Basel) 2023; 13:2264. [PMID: 38137865 PMCID: PMC10744962 DOI: 10.3390/life13122264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Endoclita signifer is a prominent wood-boring insect species in eucalyptus plantations in Guangxi, China, causing significant ecological and economic damage. A novel approach to controlling the challenging wood-boring pest involves disrupting the olfactory communication between insects and the volatile compounds emitted by plants. To identify the olfactory proteins contributing to host selection based on 11 GC-EAD-active volatiles from eucalyptus leaves and to discover the highly expressed olfactory proteins, we conducted a study on the antennal transcriptomes of adult E. signifer and screened key olfactory proteins in the antennae. We identified a total of 69 olfactory proteins. When compared to the larval transcriptomes, the antennal transcriptome of adult E. signifer revealed the presence of 17 new odorant-binding proteins (OBPs), including 2 pheromone-binding proteins (PBPs), 7 previously unreported chemosensory proteins (CSPs), 17 new odorant receptors (ORs), 4 new gustatory receptors (GRs), 11 novel ionotropic receptors (IRs), and 2 sensory neuron membrane proteins (SNMPs). Through the phylogenetic tree of OBPs and ORs, we identified EsigPBP2 and EsigPBP3 as two of the three PBPs, designated EsigOR13 as EsigOrco, and recognized EsigOR10 and EsigOR22 as the newly discovered EsigPRs in E. signifer. In the adult antennae, the expression levels of EsigGOBP14, EsigGOBP13, EsigOBP14, EsigOBP17, EsigCSP14, and EsigOR16 were notably high, indicating that these proteins could be pivotal in binding to plant volatiles.
Collapse
Affiliation(s)
- Guipeng Xiao
- Biotechnology, Faculty of Science, Autonomous University of Madrid, 28029 Madrid, Spain;
| | - Jintao Lu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China (Z.Y.)
| | - Zhende Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China (Z.Y.)
| | - Hengfei Fu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China (Z.Y.)
| | - Ping Hu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China (Z.Y.)
| |
Collapse
|