1
|
Hehlgans S, Eckert D, Martin D, Lumniczky K, Bug G, Rödel C, Rödel F. Irradiation alters extracellular vesicle microRNA load in the serum of patients with leukaemia. Strahlenther Onkol 2025; 201:173-184. [PMID: 39325141 PMCID: PMC11754379 DOI: 10.1007/s00066-024-02307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Recent data suggest an impact of extracellular vesicles (EVs) and their micro(mi)RNA cargo on cell-cell interactions to contribute to pathophysiology of leukaemia and radiation response. Here, we investigated differential miRNA cargo of EVs from serum derived from patients with leukaemia (n = 11) before and after total body irradiation with 2 × 2 Gy as compared to healthy donors (n = 6). METHODS RNA was isolated from EVs and subjected to next generation sequencing of miRNAs. Analysis of sequencing data was performed with miRDeep29 software and differentially expressed miRNAs were filtered using R package edgeR10,11. Signaling pathways were identified using Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway analysis. RESULTS Flow cytometric and Western blot analyses confirmed the presence of characteristic EV markers TSG-101, CD‑9 and CD-81. miRNA sequencing revealed a differential cargo in serum of patients with leukaemia in comparison to healthy donors with 23 significantly upregulated and 16 downregulated miRNAs affecting hedgehog, estrogen, glutathione metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathways amongst others. Whole body irradiation of patients with leukaemia significantly increased 11 miRNAs, involved in cell cycle regulation and platinum drug resistance, and decreased 15 miRNAs, contributing to apoptosis or cytokine-receptor interactions. CONCLUSION As compared to healthy controls and following irradiation, we have identified differentially regulated miRNAs in serum-derived EVs from patients with leukaemia that may serve as possible biomarkers of leukaemic disease and treatment and radiation exposure.
Collapse
Affiliation(s)
- Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Denise Eckert
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120, Heidelberg, Germany
| | - Daniel Martin
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Katalin Lumniczky
- National Center for Public Health and Pharmacy, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, Budapest, Hungary
| | - Gesine Bug
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Medicine II, Hematology and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Shaikh M, Doshi G. Unraveling non-coding RNAs in breast cancer: mechanistic insights and therapeutic potential. Med Oncol 2024; 42:37. [PMID: 39730979 DOI: 10.1007/s12032-024-02589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Breast cancer remains a leading global health challenge requiring innovative, therapeutic strategies to improve patient outcomes. This review explores the pivotal roles of non-coding RNAs (ncRNAs), including long non-coding RNA, micro RNA, and circular RNA, in breast cancer biology. We highlight how these molecules regulate critical signaling pathways, influence tumor microenvironments, and contribute to treatment resistance. Our findings underscore the potential of ncRNAs as biomarkers for early diagnosis and as treatment targets for personalized treatment strategies. To pave the way for innovative cancer management approaches, we investigate the complex interactions of ncRNAs and their impact on tumor progression. This comprehensive review enhances our understanding of breast cancer biology while emphasizing the translational significance of ncRNA research in developing effective treatment strategies. Additional research and clinical studies are required to confirm the diagnostic and medicinal value of ncRNAs in breast cancer. Investigating the complex networks of ncRNA interactions and their links to other biological pathways can lead to the discovery of new treatment targets. Furthermore, leveraging advanced technologies, such as machine learning and multi-omics methods, will be critical in improving our understanding of ncRNAs biomarkers and translating these insights into impactful clinical applications.
Collapse
Affiliation(s)
- Muqtada Shaikh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
3
|
Butler T, Davey MG, Kerin MJ. Molecular Morbidity Score-Can MicroRNAs Assess the Burden of Disease? Int J Mol Sci 2024; 25:8042. [PMID: 39125612 PMCID: PMC11312210 DOI: 10.3390/ijms25158042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. This is largely because patients with multimorbidity are systematically excluded from clinical trials. Accordingly, there is an urgent need to develop novel biomarkers and methods of prognostication for this cohort of patients. The hallmarks of ageing are now thought to potentiate the pathogenesis of multimorbidity. MicroRNAs are small, regulatory, noncoding RNAs which have been implicated in the pathogenesis and prognostication of numerous chronic diseases; there is a substantial body of evidence now implicating microRNA dysregulation with the different hallmarks of ageing in the aetiology of chronic diseases. This article proposes using the hallmarks of ageing as a framework to develop a panel of microRNAs to assess the prognostic burden of multimorbidity. This putative molecular morbidity score would have many potential applications, including assessing the efficacy of clinical interventions, informing clinical decision making and facilitating wider inclusion of patients with multimorbidity in clinical trials.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
- Department of Surgery, University Hospital Galway, Newcastle Road, H91 YR71 Galway, Ireland
| |
Collapse
|
4
|
Baylie T, Kasaw M, Getinet M, Getie G, Jemal M, Nigatu A, Ahmed H, Bogale M. The role of miRNAs as biomarkers in breast cancer. Front Oncol 2024; 14:1374821. [PMID: 38812786 PMCID: PMC11133523 DOI: 10.3389/fonc.2024.1374821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer (BC) is the second most common cause of deaths reported in women worldwide, and therefore there is a need to identify BC patients at an early stage as timely diagnosis would help in effective management and appropriate monitoring of patients. This will allow for proper patient monitoring and effective care. However, the absence of a particular biomarker for BC early diagnosis and surveillance makes it difficult to accomplish these objectives. miRNAs have been identified as master regulators of the molecular pathways that are emphasized in various tumors and that lead to the advancement of malignancies. Small, non-coding RNA molecules known as miRNAs target particular mRNAs to control the expression of genes. miRNAs dysregulation has been linked to the start and development of a number of human malignancies, including BC, since there is compelling evidence that miRNAs can function as tumor suppressor genes or oncogenes. The current level of knowledge on the role of miRNAs in BC diagnosis, prognosis, and treatment is presented in this review. miRNAs can regulate the tumorigenesis of BC through targeting PI3K pathway and can be used as prognostic or diagnostic biomarkers for BC therapy. Some miRNAs, like miR-9, miR-10b, and miR-17-5p, are becoming known as biomarkers of BC for diagnosis, prognosis, and therapeutic outcome prediction. Other miRNAs, like miR-30c, miR-187, and miR-339-5p, play significant roles in the regulation of hallmark functions of BC, including invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. Other miRNAs, such as miR-155 and miR-210, are circulating in bodily fluids and are therefore of interest as novel, conveniently accessible, reasonably priced, non-invasive methods for the customized care of patients with BC.
Collapse
Affiliation(s)
- Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mulugeta Kasaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gedefaw Getie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Amare Nigatu
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Hassen Ahmed
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Woldia University, Woldia, Ethiopia
| | - Mihiret Bogale
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, Wollo University, Wollo, Ethiopia
| |
Collapse
|
5
|
Wang D, Yin GH. Non-coding RNAs mediated inflammation in breast cancers. Semin Cell Dev Biol 2024; 154:215-220. [PMID: 37244867 DOI: 10.1016/j.semcdb.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Breast cancer is the major cancer that affects women all over the world. The awareness over past several decades has led to intensive screening and detection as well as successful treatments. Still, the breast cancer mortality is unacceptable and needs to be urgently addressed. Among many factors, inflammation has often been associated with tumorigenesis, including breast cancer. More than a third of all breast cancer deaths are marked by deregulated inflammation. The exact mechanisms are still not completely known but among the many putative factors, the epigenetic changes, particularly those mediated by non-coding RNAs are fascinating. microRNAs, long non-coding RNAs as well as circular RNAs seem to impact the inflammation in breast cancer which further highlights their important regulatory role in breast cancer pathogenesis. Understanding inflammation in breast cancer and its regulation by non-coding RNAs is the primary objective of this review article. We attempt to provide the most complete information on the topic in hopes of opening new areas of research and discoveries.
Collapse
Affiliation(s)
- Dan Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Guang-Hao Yin
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, China.
| |
Collapse
|
6
|
Pankotai-Bodó G, Oláh-Németh O, Sükösd F, Pankotai T. Routine molecular applications and recent advances in breast cancer diagnostics. J Biotechnol 2024; 380:20-28. [PMID: 38122830 DOI: 10.1016/j.jbiotec.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Cancer stands as one of the most common and lethal diseases, imposing a substantial burden on global mortality rates. Breast cancer is distinct from other forms of cancer in which it is the primary cause of death for women. Early detection of breast cancer can significantly lower the risk of mortality, improving the prognosis for those who are affected. The death rate of breast cancer has been steadily rising, according to epidemiological data, especially since the COVID-19 pandemic. This emphasizes the necessity of sensitive and precise technologies that can be utilized in early breast cancer diagnosis. In this process, biomarkers play a pivotal role by facilitating the early detection and diagnosis of breast cancer. Currently, a wide variety of cancer biomarkers have been identified, improving the accuracy of cancer diagnosis. These biomarkers can be applied in liquid biopsies as well as on solid tissues. In the context of breast cancer, biomarkers are particularly valuable for determining who is predisposed to the disease, predicting prognosis at the time of diagnosis, and selecting the best course of therapy. This review comprehensively explores the recently developed gene-based biomarkers from biofluids that are used in the context of breast cancer, as well as the conventional and cutting-edge techniques that have been employed for breast cancer diagnosis.
Collapse
Affiliation(s)
- Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary
| | - Orsolya Oláh-Németh
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary; Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, Budapesti út 9, Szeged H-6728, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary; Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, Budapesti út 9, Szeged H-6728, Hungary; Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, Szeged H-6720, Hungary.
| |
Collapse
|
7
|
Tariq M, Richard V, Kerin MJ. MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype. Biomedicines 2023; 11:3007. [PMID: 38002007 PMCID: PMC10669494 DOI: 10.3390/biomedicines11113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is a heterogeneous disease highlighted by the presence of multiple tumor variants and the basal-like breast cancer (BLBC) is considered to be the most aggressive variant with limited therapeutics and a poor prognosis. Though the absence of detectable protein and hormonal receptors as biomarkers hinders early detection, the integration of genomic and transcriptomic profiling led to the identification of additional variants in BLBC. The high-throughput analysis of tissue-specific micro-ribonucleic acids (microRNAs/miRNAs) that are deemed to have a significant role in the development of breast cancer also displayed distinct expression profiles in each subtype of breast cancer and thus emerged to be a robust approach for the precise characterization of the BLBC subtypes. The classification schematic of breast cancer is still a fluid entity that continues to evolve alongside technological advancement, and the transcriptomic profiling of tissue-specific microRNAs is projected to aid in the substratification and diagnosis of the BLBC tumor subtype. In this review, we summarize the current knowledge on breast tumor classification, aim to collect comprehensive evidence based on the microRNA expression profiles, and explore their potential as prospective biomarkers of BLBC.
Collapse
Affiliation(s)
| | - Vinitha Richard
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| |
Collapse
|
8
|
Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel) 2023; 13:3072. [PMID: 37835815 PMCID: PMC10572677 DOI: 10.3390/diagnostics13193072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a subclass of non-coding RNAs that exert substantial influence on gene-expression regulation. Their tightly controlled expression plays a pivotal role in various cellular processes, while their dysregulation has been implicated in numerous pathological conditions, including cancer. Among cancers affecting women, breast cancer (BC) is the most prevalent malignant tumor. Extensive investigations have demonstrated distinct expression patterns of miRNAs in normal and malignant breast cells. Consequently, these findings have prompted research efforts towards leveraging miRNAs as diagnostic tools and the development of therapeutic strategies. The aim of this review is to describe the role of miRNAs in BC. We discuss the identification of oncogenic, tumor suppressor and metastatic miRNAs among BC cells, and their impact on tumor progression. We describe the potential of miRNAs as diagnostic and prognostic biomarkers for BC, as well as their role as promising therapeutic targets. Finally, we evaluate the current use of artificial intelligence tools for miRNA analysis and the challenges faced by these new biomedical approaches in its clinical application. The insights presented in this review underscore the promising prospects of utilizing miRNAs as innovative diagnostic, prognostic, and therapeutic tools for the management of BC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| | - Yasmín Pérez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
9
|
Krupp K, Segar JM, Fernández-Martínez JL, Madhivanan P. MicroRNAs: Emerging as Highly Promising Biomarkers for Early Breast Cancer Screening. JOURNAL OF CLINICAL AND LABORATORY MEDICINE 2023; 6:273. [PMID: 37937319 PMCID: PMC10629926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Affiliation(s)
- Karl Krupp
- Public Health Practice, Policy, & Translational Research Department, Mel and Enid Zuckerman College of Public Health, University of Arizona, 550 E. Van Buren Street, UA Phoenix - Plaza Building 1, Phoenix AZ 850063, USA
| | - Jennifer M Segar
- University of Arizona Cancer Center - UAHS, University of Arizona College of Medicine, Tucson, 1501 N. Campbell Avenue, PO Box 245017, Tucson, AZ 85724, USA
| | | | - Purnima Madhivanan
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, 1295 N Martin Avenue, PO Box 245209, Tucson, AZ 85724-5209
| |
Collapse
|
10
|
Abbas Syed R, Davey MG, Richard V, Miller N, Kerin MJ. Biological Implications of MicroRNAs as Regulators and Biomarkers of Therapeutic Toxicities in Breast Cancer. Int J Mol Sci 2023; 24:12694. [PMID: 37628874 PMCID: PMC10454054 DOI: 10.3390/ijms241612694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Contemporary breast cancer management includes surgical resection combined with a multimodal approach, including chemotherapy, radiotherapy, endocrine therapy, and targeted therapies. Breast cancer treatment is now personalised in accordance with disease and host factors, which has translated to enhanced outcomes for the vast majority of patients. Unfortunately, the treatment of the disease involves patients developing treatment-induced toxicities, with cardiovascular and metabolic side effects having negative implications for long-term quality-of-life metrics. MicroRNAs (miRNAs) are a class of small non-coding ribonucleic acids that are 17 to 25 nucleotides in length, which have utility in modifying genetic expression by working at a post-transcriptional cellular level. miRNAs have involvement in modulating breast cancer development, which is well described, with these biomarkers acting as important regulators of disease, as well as potential diagnostic and therapeutic biomarkers. This review focuses on highlighting the role of miRNAs as regulators and biomarkers of disease, particularly in breast cancer management, with a specific mention of the potential value of miRNAs in predicting treatment-related cardiovascular toxicity.
Collapse
Affiliation(s)
- Raza Abbas Syed
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (M.G.D.)
| | | | | | | | | |
Collapse
|