1
|
Harrison JM, Leong EK, Osborne ND, Marshall JS, Bezuhly M. AT2R Activation Improves Wound Healing in a Preclinical Mouse Model. Biomedicines 2024; 12:1238. [PMID: 38927444 PMCID: PMC11200587 DOI: 10.3390/biomedicines12061238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Abnormal skin healing resulting in chronic wounds or hypertrophic scarring remains a major healthcare burden. Here, the antifibrotic angiotensin II type 2 receptor (AT2R) signaling pathway was modulated to determine its impact on cutaneous wound healing. Balb/c mice received two splinted full-thickness wounds. Topical treatments with the selective AT2R agonist compound 21 (C21) and/or selective antagonist PD123319 or saline vehicle were administered until sacrifice on post-wounding days 7 or 10. The rate of wound re-epithelialization was accelerated by PD123319 and combination treatments. In vitro, C21 significantly reduced human fibroblast migration. C21 increased both collagen and vascular densities at days 7 and 10 post-wounding and collagen I:III ratio at day 10, while PD123319 and combination treatments decreased them. Genes associated with regeneration and repair were upregulated by C21, while PD123319 treatment increased the expression of genes associated with inflammation and immune cell chemotaxis. C21 treatment reduced wound total leukocyte and neutrophil staining densities, while PD123319 increased these and macrophage densities. Overall, AT2R activation with C21 yields wounds that mature more quickly with structural, cellular, and gene expression profiles more closely approximating unwounded skin. These findings support AT2R signal modulation as a potential therapeutic target to improve skin quality during wound healing.
Collapse
Affiliation(s)
- Julia M. Harrison
- Department of Surgery, IWK Health Centre, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada;
- Department of Surgery, Dalhousie University, 5850 College St, Halifax, NS B3H 4H7, Canada
| | - Edwin K. Leong
- Department of Pathology, Dalhousie University, 5850 College St, Halifax, NS B3H 4H7, Canada
| | - Natasha D. Osborne
- Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS B3H 4H7, Canada;
| | - Jean S. Marshall
- Department of Pathology, Dalhousie University, 5850 College St, Halifax, NS B3H 4H7, Canada
- Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS B3H 4H7, Canada;
| | - Michael Bezuhly
- Department of Surgery, IWK Health Centre, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada;
- Department of Surgery, Dalhousie University, 5850 College St, Halifax, NS B3H 4H7, Canada
- Department of Microbiology & Immunology, Dalhousie University, 5850 College St, Halifax, NS B3H 4H7, Canada;
| |
Collapse
|
2
|
Joo YC, Chung JY, Kwon SO, Han JH. Adenosine A2A Receptor Agonist, Polydeoxyribonucleotide Treatment Improves Locomotor Function and Thermal Hyperalgesia Following Neuropathic Pain in Rats. Int Neurourol J 2023; 27:243-251. [PMID: 38171324 PMCID: PMC10762369 DOI: 10.5213/inj.2326154.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Lithotomy position has been widely used in the various urologic surgery. Occasionally sensory and motor problems of the lower extremities are occurred due to the lithotomy position and these deficits may be related with sciatic nerve injury (SNI). Inflammatory process is a factor to induce functional impairment after SNI. Therefore, we evaluated the role of adenosine A2A receptor agonists, polydeoxyribonucleotide (PDRN) showing anti-inflammatory effect on locomotor function following SNI in rats. METHODS Sciatic nerve was compressed with surgical clips for 1 minute after exposing of right sciatic nerve. After 3 days of SNI, PDRN (2, 4, and 8 mg/kg) was applied to the damaged area of sciatic nerve once daily for 10 days. Walking track analysis was conducted for locomotor function and plantar test was performed for thermal pain sensitivity. Level of cyclic adenosine-3´,5´-monophosphate (cAMP) were measured using enzyme-linked immunosorbent assay. Western blot analysis was performed for tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cAMP response element binding protein (CREP), vascular endothelial growth factor (VEGF). Immunofluorescence for neurofilament was also conducted. RESULTS Locomotor function was decreased and thermal pain sensitivity was increased by SNI. SNI enhanced proinflammatory cytokines' production, such as TNF-α and IL-1β, while suppressed CREP phosphorylation and cAMP level. SNI also reduced the expression of VEGF and neurofilaments. However, treatment with PDRN inhibited proinflammatory cytokines' production and upregulated CREP phosphorylation and cAMP expression. PDRN also enhanced the expression of VEGF and neurofilaments. As a result, PDRN improved locomotor function and alleviated thermal hyperalgesia after SNI. CONCLUSION PDRN has shown potential to be used as an effective treatment for neuropathic pain.
Collapse
Affiliation(s)
- Ye Chan Joo
- Department of Urology, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Jun Young Chung
- Department of Anesthesiology and Pain Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Korea
| | - Soon Oh Kwon
- Department of Anesthesiology and Pain Medicine, Kyung Hee University College of Medicine, Kyung Hee University Kyung Hee Medical Center, Kyung Hee University, Seoul, Korea
| | - Jin Hee Han
- Department of Anesthesiology and Pain Medicine, Kyung Hee University College of Medicine, Kyung Hee University Kyung Hee Medical Center, Kyung Hee University, Seoul, Korea
| |
Collapse
|
3
|
Moura-Pacheco TL, Martins-Pereira RC, Medeiros P, Sbragia L, Ramos Andrade Leite-Panissi C, Machado HR, Coimbra NC, de Freitas RL. Effect of electrical and chemical (activation versus inactivation) stimulation of the infralimbic division of the medial prefrontal cortex in rats with chronic neuropathic pain. Exp Brain Res 2023; 241:2591-2604. [PMID: 37725136 DOI: 10.1007/s00221-023-06657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/20/2023] [Indexed: 09/21/2023]
Abstract
Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 μA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.
Collapse
Affiliation(s)
- Thais Lohanny Moura-Pacheco
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Pediatric Surgery Laboratory, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renata Cristina Martins-Pereira
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Protection Laboratory in Childhood, Division of Neurosurgery, Department of Surgery and Anatomy, FMRP-USP, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Lourenço Sbragia
- Pediatric Surgery Laboratory, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology,, Faculty of Philosophy, Science and Letters of Ribeirão Preto of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Hélio Rubens Machado
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Psychology,, Faculty of Philosophy, Science and Letters of Ribeirão Preto of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|