1
|
Yang HS, Zhang J, Feng HX, Qi F, Kong FJ, Zhu WJ, Liang CY, Zhang ZR. Characterizing microbial communities and their correlation with genetic mutations in early-stage lung adenocarcinoma: implications for disease progression and therapeutic targets. Front Oncol 2025; 14:1498524. [PMID: 39845316 PMCID: PMC11752883 DOI: 10.3389/fonc.2024.1498524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD), the most prevalent form of lung cancer. The transition from adenocarcinoma in situ (AIS), and minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC) is not fully understood. Intratumoral microbiota may play a role in LUAD progression, but comprehensive stage-wise analysis is lacking. Methods Tumor and bronchoalveolar lavage fluid (BALF) samples from patients with AIS/MIA or IAC were collected for next-generation sequencing to characterize microbial diversity and composition. DNA extraction involved lysing samples with nuclease and protease, followed by homogenization and elution. Sequencing libraries were prepared and sequenced on the Illumina platform. Whole exome sequencing was performed to identify somatic mutations and genetic variants. Bioinformatics analysis, including taxonomic annotation with Kraken2 and de novo assembly with MEGAHIT, was conducted to process metagenomic data. Correlation analysis was performed to link microbial species with mutated genes using custom R scripts. Results Metagenomic analysis revealed a distinct microbial profile in IAC compared to AIS/MIA, with increased abundance of Bacteroidetes and Firmicutes in the IAC group. Bosea sp. and Microbacterium paludicola, were less abundant in IAC, suggesting a potential protective role in early-stage disease. Conversely, Mycolicibacterium species were more prevalent in IAC, indicating a possible contribution to disease progression. Genetic sequencing identified PTPRZ1 strongly correlating with microbial composition, suggesting a mechanistic link between microbiota and genetic alterations in LUAD. Conclusion This study characterizes microbial communities in various stages of LUAD, revealing links between microbiota and genetic mutations. The unique microbiota suggests its role in LUAD progression and as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chao-Yang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital,
Beijing, China
| | - Zhen-Rong Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital,
Beijing, China
| |
Collapse
|
2
|
V U P, T I M, K K M. An integrative analysis to identify pancancer epigenetic biomarkers. Comput Biol Chem 2024; 113:108260. [PMID: 39467487 DOI: 10.1016/j.compbiolchem.2024.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Integrating and analyzing the pancancer data collected from different experiments is crucial for gaining insights into the common mechanisms in the molecular level underlying the development and progression of cancers. Epigenetic study of the pancancer data can provide promising results in biomarker discovery. The genes that are epigenetically dysregulated in different cancers are powerful biomarkers for drug-related studies. This paper identifies the genes having altered expression due to aberrant methylation patterns using differential analysis of TCGA pancancer data of 12 different cancers. We identified a comprehensive set of 115 epigenetic biomarker genes out of which 106 genes having pancancer properties. The correlation analysis, gene set enrichment, protein-protein interaction analysis, pancancer characteristics analysis, and diagnostic modeling were performed on these biomarkers to illustrate the power of this signature and found to be important in different molecular operations related to cancer. An accuracy of 97.56% was obtained on TCGA pancancer gene expression dataset for predicting the binary class tumor or normal. The source code and dataset of this work are available at https://github.com/panchamisuneeth/EpiPanCan.git.
Collapse
Affiliation(s)
- Panchami V U
- Adi Shankara Institute of Engineering and Technology, Ernakulam, 683574, Kerala, India; Government Engineering College Thrissur, 680009, Kerala, India; APJ Abdul Kalam Technological University, 695016, Kerala, India.
| | - Manish T I
- SCMS School of Engineering and Technology, Ernakulam, 683576, Kerala, India; APJ Abdul Kalam Technological University, 695016, Kerala, India
| | - Manesh K K
- Government Engineering College Thrissur, 680009, Kerala, India; APJ Abdul Kalam Technological University, 695016, Kerala, India
| |
Collapse
|
3
|
Chen M, Karimpour PA, Elliott A, He D, Knifley T, Liu J, Wang C, O’Connor KL. Integrin α6β4 Upregulates PTPRZ1 Through UCHL1-Mediated Hif-1α Nuclear Accumulation to Promote Triple-Negative Breast Cancer Cell Invasive Properties. Cancers (Basel) 2024; 16:3683. [PMID: 39518121 PMCID: PMC11545476 DOI: 10.3390/cancers16213683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 or knockdown or knockout (KO) of ITGB4, we found that integrin α6β4 regulates PTPRZ1 expression. To gain mechanistic insight, we focused on Hif-1α due to the impact of integrin α6β4 on a hypoxia-associated signature. We found that nuclear localization of Hif-1α, but not Hif-2α, was substantially enhanced with integrin α6β4 signaling. Hif-1α knockdown by shRNA or chemical inhibition decreased PTPRZ1 expression, while chemical activation of Hif-1α increased it. Upstream of Hif-1α, integrin α6β4 upregulates UCHL1 to stabilize Hif-1α and ultimately regulate PTPRZ1. Inhibition of UCHL1 and PTPRZ1 dramatically decreases integrin α6β4-mediated cell migration and three-dimensional invasive growth. Finally, public breast cancer database analyses demonstrated that ITGB4 correlates with PTPRZ1 and that high expression of ITGB4, UCHL1, HIF1A, and PTPRZ1 associated with decreased overall survival, distant metastasis free survival, post progression survival, and relapse-free survival. In summary, these findings provide a novel function of integrin α6β4 in promoting tumor invasive phenotypes through UCHL1-Hif-1α-mediated regulation of PTPRZ1.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Parvanee A. Karimpour
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew Elliott
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (P.A.K.); (A.E.); (D.H.); (T.K.); (J.L.); (C.W.)
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Bi Y, Wan D, Chen S, Chen H, Guo L, He X, Rong R, Xiao J, Gao W, Xiao S. Case report: Germline CHEK2 mutation is associated with a giant cell glioblastoma. Front Oncol 2024; 14:1361928. [PMID: 39411129 PMCID: PMC11474180 DOI: 10.3389/fonc.2024.1361928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Giant cell glioblastoma often exhibits genome instability and is frequently associated with mutations in genes involved in DNA repair pathways including TP53 and DNA mismatch repair genes. Several germline mutations have been identified in giant cell glioblastoma, including mutations of MSH1 and MSH2, TP53, and POLE. We have documented a case of a germline mutation in CHEK2, another gene crucial to DNA repair, in a patient with giant cell glioblastoma. The CHEK2 mutation was inherited from the patient's father, who had a history of gastric cancer and renal cell carcinoma. In addition to the germline CHEK2 mutation, the giant cell glioblastoma exhibited a genome-wide loss of heterozygosity, a characteristic observed in a subset of giant cell glioblastomas. Additional mutations detected in the tumor included TP53, PTEN, and a PTPRZ1-MET fusion. This represents the first reported case of a CHEK2 germline mutation in giant cell glioblastoma, further supporting the significance of impaired DNA repair mechanisms in the development of this disease.
Collapse
Affiliation(s)
- Yongfeng Bi
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dong Wan
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, China
- Sano Precision Medicine Ltd., Suzhou, China
| | - Si Chen
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, China
- Sano Precision Medicine Ltd., Suzhou, China
| | - Huafei Chen
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, China
- Sano Precision Medicine Ltd., Suzhou, China
| | - Lingchuan Guo
- Advanced Molecular Pathology Institute of Soochow University and SANO, Suzhou, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoshun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Rong
- Department of Biological Sciences, Xi An Jiaotong-Liverpool University, Suzhou, China
| | - Jinyuan Xiao
- The College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Choleva E, Menounou L, Ntenekou D, Kastana P, Tzoupis Η, Katraki-Pavlou S, Drakopoulou M, Spyropoulos D, Andrikopoulou A, Kanellopoulou V, Enake MK, Beis D, Papadimitriou E. Targeting the interaction of pleiotrophin and VEGFA 165 with protein tyrosine phosphatase receptor zeta 1 inhibits endothelial cell activation and angiogenesis. Eur J Pharmacol 2024; 977:176692. [PMID: 38821164 DOI: 10.1016/j.ejphar.2024.176692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) that serves as a receptor for pleiotrophin (PTN) and vascular endothelial growth factor A 165 (VEGFA165) to regulate endothelial cell migration. In the present work, we identify a PTN peptide fragment (PTN97-110) that inhibits the interaction of PTN and VEGFA165 with PTPRZ1 but not VEGF receptor 2. This peptide abolishes the stimulatory effect of PTN and VEGFA165 on endothelial cell migration, tube formation on Matrigel, and Akt activation in vitro. It also partially inhibits VEGFA165-induced VEGF receptor 2 activation but does not affect ERK1/2 activation and cell proliferation. In vivo, PTN97-110 inhibits or dysregulates angiogenesis in the chick embryo chorioallantoic membrane and the zebrafish assays, respectively. In glioblastoma cells in vitro, PTN97-110 abolishes the stimulatory effect of VEGFA165 on cell migration and inhibits their anchorage-independent growth, suggesting that this peptide might also be exploited in glioblastoma therapy. Finally, in silico and experimental evidence indicates that PTN and VEGFA165 bind to the extracellular fibronectin type-III (FNIII) domain to stimulate cell migration. Collectively, our data highlight novel aspects of the interaction of PTN and VEGFA165 with PTPRZ1, strengthen the notion that PTPRZ1 is required for VEGFA165-induced signaling, and identify a peptide that targets this interaction and can be exploited for the design of novel anti-angiogenic and anti-glioblastoma therapeutic approaches.
Collapse
Affiliation(s)
- Effrosyni Choleva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Lydia Menounou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Despoina Ntenekou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Pinelopi Kastana
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | | | - Stamatiki Katraki-Pavlou
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece
| | - Maria Drakopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Dimitrios Spyropoulos
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Anastasia Andrikopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Vasiliki Kanellopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Michaela-Karina Enake
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | - Dimitris Beis
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece; Laboratory of Biological Chemistry, Faculty of Medicine, University of Ioannina, Greece
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, 26504, Greece.
| |
Collapse
|
6
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
7
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|