1
|
Zhou X, Yang S, Zhou F, Xu L, Shi C, He Q. Physiological, Cytological and Transcriptome Analysis of a Yellow-Green Leaf Mutant in Magnolia sinostellata. PLANTS (BASEL, SWITZERLAND) 2025; 14:1037. [PMID: 40219105 PMCID: PMC11990752 DOI: 10.3390/plants14071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Leaf color mutants serve as excellent models for investigating the metabolic pathways involved in chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. This study aimed to elucidate the mechanisms underlying color formation in the yellow-green leaf mutant (YL) of Magnolia sinostellata by employing physiological, cytological and transcriptomic analyses to compare the mutant with control plants (wild type Magnolia sinostellata, WT). Physiological assessments revealed a reduction in chlorophyll content, particularly chlorophyll b, alongside an increase in the flavonoid level in YL relative to WT. Cytological examinations indicated the presence of defective chloroplasts within the mesophyll cells of the mutants. Transcriptomic analysis identified 8205 differentially expressed genes, with 4159 upregulated and 4046 downregulated. Genes associated with chlorophyll metabolism, flavonoid metabolism, photosynthesis, and signaling pathways were found to play crucial roles in leaf yellowing. In conclusion, this study delineated the phenotypic, physiological, cytological, and transcriptomic differences between YL and WT leaves, offering novel insights into the mechanisms driving leaf yellowing in Magnolia sinostellata.
Collapse
Affiliation(s)
- Xiawen Zhou
- Zhejiang Academy of Forestry, No.399, Liuhe Road, Hangzhou 310023, China; (X.Z.); (S.Y.); (F.Z.); (L.X.)
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shaozong Yang
- Zhejiang Academy of Forestry, No.399, Liuhe Road, Hangzhou 310023, China; (X.Z.); (S.Y.); (F.Z.); (L.X.)
| | - Fangwei Zhou
- Zhejiang Academy of Forestry, No.399, Liuhe Road, Hangzhou 310023, China; (X.Z.); (S.Y.); (F.Z.); (L.X.)
| | - Liang Xu
- Zhejiang Academy of Forestry, No.399, Liuhe Road, Hangzhou 310023, China; (X.Z.); (S.Y.); (F.Z.); (L.X.)
| | - Congguang Shi
- Zhejiang Academy of Forestry, No.399, Liuhe Road, Hangzhou 310023, China; (X.Z.); (S.Y.); (F.Z.); (L.X.)
| | - Qiuling He
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Zhang Y, Wei G, Xue J, Xu J. CfSGR1 and CfSGR2 from Cryptomeria fortunei exhibit contrasting responses to hormones and abiotic stress in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109152. [PMID: 39423720 DOI: 10.1016/j.plaphy.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Stay-green (SGR) genes are pivotal regulatory genes in the context of plant chlorophyll metabolism, but few studies on SGR homologues in Cryptomeria fortunei have been previously reported. We cloned two CfSGR genes and overexpressed them in Arabidopsis to explore their functions. Full-length CfSGR1 and CfSGR2 are 1265 and 1197 bp, encompassing open reading frames (ORFs) encoding 274 and 276 amino acids, respectively. SGRs exhibited high conservation in higher plants, and phylogenetic analysis indicated that SGRs from monocots and gymnosperms cluster in a clade. The proteins localized to chloroplasts and showed no transcriptional activity in yeast cells. The CfSGR gene expressions were induced by abiotic stresses and hormones. Under conditions of darkness, abscisic acid (ABA), salt, drought, or freezing stress, CfSGR2-transgenic Arabidopsis exhibited a delay in leaf yellowing compared to the WT, which was attributed to increased chlorophyll content and enhanced photosynthetic capacity. These transgenic plants exhibited improved resistance to stress via upregulated expression of resistance-related genes, increased antioxidant enzyme activities, and reduced malondialdehyde content and electrolyte leakage rate. In contrast, CfSGR1-transgenic plants may accelerate leaf yellowing and exhibit reduced stress resistance. Our findings highlight potential divergence in the functions of CfSGR genes concerning plant growth and development and responses to abiotic stresses or hormones, providing a scientific foundation for future breeding of stress-resistant C. fortunei cultivars.
Collapse
Affiliation(s)
- Yingting Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China; National Forestry and Grassland Administration Engineering Research Center for Osmanthus Fragrans, Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Guangqian Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jinyu Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Li X, Zhang W, Niu D, Liu X. Effects of abiotic stress on chlorophyll metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112030. [PMID: 38346561 DOI: 10.1016/j.plantsci.2024.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Chlorophyll, an essential pigment in the photosynthetic machinery of plants, plays a pivotal role in the absorption of light energy and its subsequent transfer to reaction centers. Given that the global production of chlorophyll reaches billions of tons annually, a comprehensive understanding of its biosynthetic pathways and regulatory mechanisms is important. The metabolic pathways governing chlorophyll biosynthesis and catabolism are complex, encompassing a series of interconnected reactions mediated by a spectrum of enzymes. Environmental fluctuations, particularly abiotic stressors such as drought, extreme temperature variations, and excessive light exposure, can significantly perturb these processes. Such disruptions in chlorophyll metabolism have profound implications for plant growth and development. This review delves into the core aspects of chlorophyll metabolism, encompassing both biosynthetic and degradative pathways. It elucidates key genes and enzymes instrumental in these processes and underscores the impact of abiotic stress on chlorophyll metabolism. Furthermore, the review aims to deepen the understanding of the interplay between chlorophyll metabolic dynamics and stress responses, thereby shedding light on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Ahmad S, Tabassum J, Sheng Z, Lv Y, Chen W, Zeb A, Dong N, Ali U, Shao G, Wei X, Hu S, Tang S. Loss-of-function of PGL10 impairs photosynthesis and tolerance to high-temperature stress in rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14369. [PMID: 38828612 DOI: 10.1111/ppl.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.
Collapse
Affiliation(s)
- Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yusong Lv
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Wei Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aqib Zeb
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Nannan Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Umed Ali
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
5
|
Shi Y, Jin X, Ackah M, Amoako FK, Li J, Tsigbey VE, Li H, Cui Z, Sun L, Zhao C, Zhao W. Comparative Physio-Biochemical and Transcriptome Analyses Reveal Contrasting Responses to Magnesium Imbalances in Leaves of Mulberry ( Morus alba L.) Plants. Antioxidants (Basel) 2024; 13:516. [PMID: 38790621 PMCID: PMC11117640 DOI: 10.3390/antiox13050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Magnesium (Mg) deficiency is a major factor limiting the growth and development of plants. Mulberry (Morus alba L.) is an important fruit tree crop that requires Mg for optimal growth and yield, especially in acid soils. However, the molecular mechanism of Mg stress tolerance in mulberry plants remains unknown. In this study, we used next-generation sequencing technology and biochemical analysis to profile the transcriptome and physiological changes of mulberry leaves under different Mg treatments (deficiency: 0 mM, low: 1 mM, moderate low: 2 mM, sufficiency: 3 mM, toxicity: 6 mM, higher toxicity: 9 mM) as T1, T2, T3, CK, T4, T5 treatments, respectively, for 20 days. The results showed that Mg imbalance altered the antioxidant enzymatic activities, such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), and non-enzymatic, including soluble protein, soluble sugar, malondialdehyde (MDA), and proline (PRO), contents of the plant. The Mg imbalances disrupted the ultrastructures of the vital components of chloroplast and mitochondria relative to the control. The transcriptome data reveal that 11,030 genes were differentially expressed (DEGs). Genes related to the photosynthetic processes (CAB40, CAB7, CAB6A, CAB-151, CAP10A) and chlorophyll degradation (PAO, CHLASE1, SGR) were altered. Antioxidant genes such as PER42, PER21, and PER47 were downregulated, but DFR was upregulated. The carbohydrate metabolism pathway was significantly altered, while those involved in energy metabolism processes were perturbed under high Mg treatment compared with control. We also identified several candidate genes associated with magnesium homeostasis via RT-qPCR validation analysis, which provided valuable information for further functional characterization studies such as promoter activity assay or gene overexpression experiments using transient expression systems.
Collapse
Affiliation(s)
- Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Victor Edem Tsigbey
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zipei Cui
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Longwei Sun
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Chengfeng Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (X.J.); (J.L.); (V.E.T.); (Z.C.); (L.S.); (C.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
6
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|