1
|
Hua H, Gu H, Ma K, Jia Y, Wu L. Dynamics and conditions for inhibitory synaptic current to induce bursting and spreading depolarization in pyramidal neurons. Sci Rep 2025; 15:8886. [PMID: 40087410 PMCID: PMC11909148 DOI: 10.1038/s41598-025-92647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Enhanced activity of inhibitory neurons, which is often used to suppress behaviors of pyramidal neurons to treat brain diseases, whereas can enhance spiking to a mixed-mode bursting (MMB) in recent experiments on migraine and seizure. The MMB contains a phase with high level of membrane potential/extracellular potassium concentration ([K+]o), which can propagate to form spreading depolarization (SD) wave. Different from the common view that the MMB/SD is often induced by enhanced positive effect or [K+]o, in the present paper, dynamics and conditions for the uncommon MMB/SD evoked by enhanced inhibitory synaptic current are obtained in a theoretical model. Firstly, in addition to the well-known positive threshold across which the common MMB is induced by positive effect, a spiking pyramidal neuron exhibits a novel negative threshold with a low level of [K+]o for the MMB. A long and strong inhibitory stimulation suppresses the spiking to silence phase via a saddle-node bifurcation on an invariant circle at first and then run across the negative threshold, triggering positive feedback to enhance membrane potential and [K+]o to levels high enough, then resulting in the uncommon MMB. Secondly, in a coupling model, enhanced inhibitory effect for enhanced spiking activity of interneuron and conductance of inhibitory synapse, and enhanced spiking activity of pyramidal neuron, are favorable for the uncommon MMB. Then, reducing these activities or parameters present potential measures to prevent the MMB. Finally, in network model, the uncommon MMB of a pyramidal neuron can induce SD wave. The results present a novel theoretical explanation to the uncommon MMB/SD, counterintuitive function of the inhibitory interneuron, and potential measures to treat the diseases.
Collapse
Affiliation(s)
- Hongtao Hua
- School of Mathematics and Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China.
| | - Kaihua Ma
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yanbing Jia
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
| | - Liang Wu
- School of Mathematics and Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
2
|
Chmiel J, Stępień-Słodkowska M. Resting-State EEG Oscillations in Amyotrophic Lateral Sclerosis (ALS): Toward Mechanistic Insights and Clinical Markers. J Clin Med 2025; 14:545. [PMID: 39860557 PMCID: PMC11766307 DOI: 10.3390/jcm14020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision. Methods: This mechanistic review examines the pattern of resting-state EEG activity. With a focus on publications published between January 1995 and October 2024, we carried out a comprehensive search in October 2024 across a number of databases, including PubMed/Medline, Research Gate, Google Scholar, and Cochrane. Results: The literature search yielded 17 studies included in this review. The studies varied significantly in their methodology and patient characteristics. Despite this, a common biomarker typical of ALS was found-reduced alpha power. Regarding other oscillations, the findings are less consistent and sometimes contradictory. As this is a mechanistic review, three possible explanations for this biomarker are provided. The main and most important one is increased cortical excitability. In addition, due to the limitations of the studies, recommendations for future research on this topic are outlined to enable a further and better understanding of EEG patterns in ALS. Conclusions: Most studies included in this review showed alpha power deficits in ALS patients, reflecting pathological hyperexcitability of the cerebral cortex. Future studies should address the methodological limitations identified in this review, including small sample sizes, inconsistent frequency-band definitions, and insufficient functional outcome measures, to solidify and extend current findings.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
- Doctoral School, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| |
Collapse
|
3
|
Gil Avila C, May ES, Bott FS, Tiemann L, Hohn V, Heitmann H, Zebhauser PT, Gross J, Ploner M. Assessing the balance between excitation and inhibition in chronic pain through the aperiodic component of EEG. eLife 2025; 13:RP101727. [PMID: 39804154 PMCID: PMC11729367 DOI: 10.7554/elife.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.
Collapse
Affiliation(s)
- Cristina Gil Avila
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
| | - Elisabeth S May
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
| | - Felix S Bott
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
| | - Laura Tiemann
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
| | - Vanessa Hohn
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
| | - Henrik Heitmann
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
- Center for Interdisciplinary Pain Medicine, TUM School of Medicine and Health, TUMMunichGermany
- Department of Psychosomatic Medicine and Psychotherapy, School of Medicine and Health, TUMMunichGermany
| | - Paul Theo Zebhauser
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
- Center for Interdisciplinary Pain Medicine, TUM School of Medicine and Health, TUMMunichGermany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
| | - Markus Ploner
- Department of Neurology, TUM School of Medicine and Health, Technical University of Munich (TUM)MunichGermany
- TUM-Neuroimaging Center, TUM School of Medicine and Health, TUMMunichGermany
- Center for Interdisciplinary Pain Medicine, TUM School of Medicine and Health, TUMMunichGermany
| |
Collapse
|
4
|
Cho LY, Bell TK, Craddock L, Godfrey KJ, Hershey AD, Kuziek J, Stokoe M, Millar K, Orr SL, Harris AD. Region-specific changes in brain glutamate and gamma-aminobutyric acid across the migraine attack in children and adolescents. Pain 2024; 165:2749-2761. [PMID: 38833578 PMCID: PMC11562757 DOI: 10.1097/j.pain.0000000000003289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 06/06/2024]
Abstract
ABSTRACT In patients with migraine, an excitation-inhibition imbalance that fluctuates relative to attack onset has been proposed to contribute to the underlying pathophysiology of migraine, but this has yet to be explored in children and adolescents. This prospective, observational, cohort study examined glutamate and gamma-aminobutyric acid (GABA) levels across the phases of a migraine attack and interictally in children and adolescents using magnetic resonance spectroscopy. Macromolecule-suppressed GABA (sensorimotor cortex and thalamus) and glutamate (occipital cortex, sensorimotor cortex, and thalamus) were measured in children and adolescents (10-17 years) with a migraine diagnosis with or without aura 4 times over 2 weeks. Linear mixed-effects models examined changes in glutamate and GABA during the 72 hours leading up to, and after the onset of an attack. We found significant region-specific changes in glutamate and GABA. Specifically, sensorimotor GABA significantly increased leading up to the headache phase, whereas glutamate significantly decreased following the headache onset in the occipital cortex and the thalamus. Post hoc analyses examined the 24 hours leading up to or following the onset of the headache phase. In the 24 hours before the headache onset, sensorimotor glutamate, occipital glutamate, and thalamic GABA decreased. In the 24 hours post headache onset, sensorimotor glutamate continued to decrease. Our results suggest changes in glutamate and GABA that are consistent with the thalamocortical dysrhythmia hypothesis. These findings provide insight into developmental migraine pathophysiology and may open future avenues for treatment targets specific to children and adolescents.
Collapse
Affiliation(s)
- Lydia Y. Cho
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Tiffany K. Bell
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Lindsay Craddock
- Vi Riddell Pain and Rehab Center, Alberta Children's Hospital Calgary, Canada
- Department of Nursing, University of Calgary, Calgary, Canada
| | - Kate J. Godfrey
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Andrew D. Hershey
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States
| | - Jonathan Kuziek
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Departments of Pediatrics, Community Health Sciences, and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Mehak Stokoe
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Kayla Millar
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Serena L. Orr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Departments of Pediatrics, Community Health Sciences, and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Gao J, Wang D, Zhu C, Wang J, Wang T, Xu Y, Ren X, Zhang K, Peng C, Guan J, Wang Y. 1H-MRS reveals abnormal energy metabolism and excitatory-inhibitory imbalance in a chronic migraine-like state induced by nitroglycerin in mice. J Headache Pain 2024; 25:163. [PMID: 39350002 PMCID: PMC11441011 DOI: 10.1186/s10194-024-01872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Chronic migraine is closely related to the dysregulation of neurochemical substances in the brain, with metabolic imbalance being one of the proposed causes of chronic migraine. This study aims to evaluate the metabolic changes between energy metabolism and excitatory and inhibitory neurotransmitters in key brain regions of mice with chronic migraine-like state and to uncover the dysfunctional pathways of migraine. METHODS A chronic migraine-like state mouse model was established by repeated administration of nitroglycerin (NTG). We used von Frey filaments to assess the mechanical thresholds of the hind paw and periorbital in wild-type and familial hemiplegic migraine type 2 mice. After the experiments, tissue was collected from five brain regions: the somatosensory cortex (SSP), hippocampus, thalamus (TH), hypothalamus, and the spinal trigeminal nucleus caudalis (TNC). Proton magnetic resonance spectroscopy (1H-MRS) was employed to study the changes in brain metabolites associated with migraine, aiming to explore the mechanisms underlying metabolic imbalance in chronic migraine-like state. RESULTS In NTG-induced chronic migraine-like state model, we observed a significant reduction in energy metabolism during central sensitization, an increase in excitatory neurotransmitters such as glutamate, and a tendency for inhibitory neurotransmitters like GABA to decrease. The TNC and thalamus were the most affected regions. Furthermore, the consistency of N-acetylaspartate levels highlighted the importance of the TNC-TH-SSP pathway in the ascending nociceptive transmission of migraine. CONCLUSION Abnormal energy metabolism and neurotransmitter imbalance in the brain region of NTG-induced chronic migraine-like state model are crucial mechanisms contributing to the chronicity of migraine.
Collapse
Affiliation(s)
- Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Da Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianxiao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunhao Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Kaibo Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Cheng Peng
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jisong Guan
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Device, ShanghaiTech University, Shanghai, China.
| | - Yonggang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
6
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Icer MA, Sarikaya B, Kocyigit E, Atabilen B, Çelik MN, Capasso R, Ağagündüz D, Budán F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024; 13:2437. [PMID: 39123629 PMCID: PMC11311711 DOI: 10.3390/foods13152437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The need to increase food safety and improve human health has led to a worldwide increase in interest in gamma-aminobutyric acid (GABA), produced by lactic acid bacteria (LABs). GABA, produced from glutamic acid in a reaction catalyzed by glutamate decarboxylase (GAD), is a four-carbon, non-protein amino acid that is increasingly used in the food industry to improve the safety/quality of foods. In addition to the possible positive effects of GABA, called a postbiotic, on neuroprotection, improving sleep quality, alleviating depression and relieving pain, the various health benefits of GABA-enriched foods such as antidiabetic, antihypertension, and anti-inflammatory effects are also being investigated. For all these reasons, it is not surprising that efforts to identify LAB strains with a high GABA productivity and to increase GABA production from LABs through genetic engineering to increase GABA yield are accelerating. However, GABA's contributions to food safety/quality and human health have not yet been fully discussed in the literature. Therefore, this current review highlights the synthesis and food applications of GABA produced from LABs, discusses its health benefits such as, for example, alleviating drug withdrawal syndromes and regulating obesity and overeating. Still, other potential food and drug interactions (among others) remain unanswered questions to be elucidated in the future. Hence, this review paves the way toward further studies.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Buse Sarikaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, Ordu 52000, Turkey;
| | - Büşra Atabilen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey;
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun 55000, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Wang L, Liu X, Zhu C, Wu S, Li Z, Jing L, Zhang Z, Jing Y, Wang Y. Environmental enrichment alleviates hyperalgesia by modulating central sensitization in a nitroglycerin-induced chronic migraine model of mice. J Headache Pain 2024; 25:74. [PMID: 38724948 PMCID: PMC11083806 DOI: 10.1186/s10194-024-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Chronic migraine (CM) is a debilitating neurofunctional disorder primarily affecting females, characterized by central sensitization. Central sensitization refers to the enhanced response to sensory stimulation, which involves changes in neuronal excitability, synaptic plasticity, and neurotransmitter release. Environmental enrichment (EE) can increase the movement, exploration, socialization and other behaviors of mice. EE has shown promising effects in various neurological disorders, but its impact on CM and the underlying mechanism remains poorly understood. Therefore, the purpose of this study was to determine whether EE has the potential to serve as a cost-effective intervention strategy for CM. METHODS A mouse CM model was successfully established by repeated administration of nitroglycerin (NTG). We selected adult female mice around 8 weeks old, exposed them to EE for 2 months, and then induced the CM model. Nociceptive threshold tests were measured using Von Frey filaments and a hot plate. The expression of c-Fos, calcitonin gene-related peptide (CGRP) and inflammatory response were measured using WB and immunofluorescence to evaluate central sensitization. RNA sequencing was used to find differentially expressed genes and signaling pathways. Finally, the expression of the target differential gene was investigated. RESULTS Repeated administration of NTG can induce hyperalgesia in female mice and increase the expression of c-Fos and CGRP in the trigeminal nucleus caudalis (TNC). Early exposure of mice to EE reduced NTG-induced hyperalgesia in CM mice. WB and immunofluorescence revealed that EE inhibited the overexpression of c-Fos and CGRP in the TNC of CM mice and alleviated the inflammatory response of microglia activation. RNA sequencing analysis identified that several central sensitization-related signaling pathways were altered by EE. VGluT1, a key gene involved in behavior, internal stimulus response, and ion channel activity, was found to be downregulated in mice exposed to EE. CONCLUSION EE can significantly ameliorate hyperalgesia in the NTG-induced CM model. The mechanisms may be to modulate central sensitization by reducing the expression of CGRP, attenuating the inflammatory response, and downregulating the expression of VGluT1, etc., suggesting that EE can serve as an effective preventive strategy for CM.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Xiaoming Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Chenlu Zhu
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Shouyi Wu
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Zhilei Li
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Lipeng Jing
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China.
| | - Yonggang Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Gate, No. 82 Linxia Road, Chengguan District, Lanzhou, 730000, China.
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
9
|
O'Hare L, Wan CL. No Evidence of Cross-Orientation Suppression Differences in Migraine with Aura Compared to Healthy Controls. Vision (Basel) 2024; 8:2. [PMID: 38391083 PMCID: PMC10885099 DOI: 10.3390/vision8010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
It has been suggested that there may be an imbalance of excitation and inhibitory processes in the visual areas of the brain in people with migraine aura (MA). One idea is thalamocortical dysrhythmia, characterized by disordered oscillations, and thus disordered communication between the lateral geniculate nucleus and the cortex. Cross-orientation suppression is a visual task thought to rely on inhibitory processing, possibly originating in the lateral geniculate nucleus. We measured both resting-state oscillations and cross-orientation suppression using EEG over occipital areas in people with MA and healthy volunteers. We found evidence of cross-orientation suppression in the SSVEP responses, but no evidence of any group difference. Therefore, inhibitory processes related to cross-orientation suppression do not appear to be impaired in MA.
Collapse
Affiliation(s)
- Louise O'Hare
- Department of Psychology, Nottingham Trent University, 50 Shakespeare Street, Nottingham NG1 4FQ, UK
| | - Choi Lam Wan
- Department of Psychology, Nottingham Trent University, 50 Shakespeare Street, Nottingham NG1 4FQ, UK
| |
Collapse
|