1
|
Deegala S, Rathnapala HC, Rajendran S, Hettiarachchi C. Transgenic Innovation: Harnessing Cyclotides as Next Generation Pesticides. ACS OMEGA 2025; 10:6323-6336. [PMID: 40028067 PMCID: PMC11865984 DOI: 10.1021/acsomega.4c09668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Cyclotides are unique cyclic mini proteins derived from plants which are recognized for the distinctive cyclic cystine knot (CCK) structure and the cyclized backbone. To date, more than 760 sequences of cyclotides have been identified across five major families, making them the largest known group of cyclic peptides. These cyclic peptides derived from plants have garnered significant attention due to their remarkable structural stability and diverse bioactivities, including potent insecticidal properties, which offer a promising alternative to conventional pesticides that are often associated with environmental toxicity and resistance development in pests. Advances in transgenic technology have opened new avenues for the sustainable and targeted deployment of cyclotides in pest management. By incorporating cyclotide genes into crops, plants can gain enhanced self-defense mechanisms against insect pests, reducing reliance on chemical pesticides and mitigating ecological impact. This review explores the molecular features essential in cyclotides' insecticidal activity, the latest breakthroughs in transgenic strategies for cyclotide expression in crops, and the potential challenges and future prospects of this innovative approach. By highlighting the synergy between natural bioactive compounds and genetic engineering, this work underscores the potential of cyclotides as next-generation, eco-friendly biopesticides to address global agricultural challenges.
Collapse
Affiliation(s)
- Sathira Deegala
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| | - Hiruni C. Rathnapala
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| | - Sanjeevan Rajendran
- Department
of Chemistry, BioDiscovery Institute, University
of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Chamari Hettiarachchi
- Department
of Chemistry, Faculty of Science, University
of Colombo, Thurstan Road, Colombo 00300, Sri Lanka
| |
Collapse
|
2
|
Asfandyar, Rao Y, Ishaq AR, Zhang Y, Zhang R, Cai D, He P, Chen S. Cell membrane engineering of Bacillus licheniformis for the enhancement of heterologous protein production. Int J Biol Macromol 2025; 305:141178. [PMID: 39965702 DOI: 10.1016/j.ijbiomac.2025.141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Heterologous expression is crucial to produce various recombinants proteins, yet consistently achieving high yields poses a significant challenge. The main objective of our research was to engineer the cell membrane components of Bacillus licheniformis for improving heterologous proteins production. This engineering strategy was achieved by overexpressing genes bkdR, plsY, plsC, and deleting pssA and clsA, which significantly increased the production of nattokinase, α-amylase and keratinase. Furthermore, a combined engineered strain was constructed by integrating all these approaches into a single strain (DW2-RYCAS) which led to an increase in the negative charge and permeability of the cell membrane by 41.11 % and 57.62 %, respectively, and reduced cell membrane integrity by 81.45 % compared to the control strain DW2. Ultimately, the production of nattokinase, α-amylase, and keratinase in DW2-RYCAS were 406.02 ± 8.17 FU/mL, 526.80 ± 14.77 U/mL, and 18.27 ± 0.70 KU/mL, respectively, which increased by 493.59 %, 273.40 %, and 213.91 % compared to the control strain DW2. These results represent the highest production of nattokinase, α-amylase, and keratinase in shake flasks reported to date. Our research illustrated the promising application of cell membrane engineering in B. licheniformis, creating an excellent platform for the biosynthesis of heterologous proteins.
Collapse
Affiliation(s)
- Asfandyar
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruibin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
3
|
de Moura Campos S, Dos Santos Costa G, Karp SG, Thomaz-Soccol V, Soccol CR. Innovations and challenges in collagen and gelatin production through precision fermentation. World J Microbiol Biotechnol 2025; 41:63. [PMID: 39910024 DOI: 10.1007/s11274-025-04276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Collagen and gelatin are essential biomaterials widely used in industries such as food, cosmetics, healthcare, and pharmaceuticals. Traditionally derived from animal tissues, these proteins are facing growing demand for more sustainable and ethical production methods. Precision fermentation (PF) offers a promising alternative by using genetically engineered microorganisms to produce recombinant collagen and gelatin. This technology not only reduces environmental impact but also ensures consistent quality and higher yields. In this review, we provide a comprehensive overview of collagen and gelatin production through PF destined for the food sector, exploring key advances in recombinant technologies, synthetic biology, and bioprocess optimization. Challenges such as scaling production, cost-efficiency, and market integration are addressed, alongside emerging solutions for enhancing industrial competitiveness. We also highlight leading companies leveraging PF to drive innovation in the food industry. As PF continues to evolve, future developments are expected to improve efficiency, reduce costs, and expand the applications of recombinant collagen and gelatin, particularly in the food and supplement sectors.
Collapse
Affiliation(s)
- Sofia de Moura Campos
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Gabriela Dos Santos Costa
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Susan Grace Karp
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Vanete Thomaz-Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
4
|
Pereira AA, Yaverino-Gutierrez MA, Monteiro MC, Souza BA, Bachheti RK, Chandel AK. Precision fermentation in the realm of microbial protein production: State-of-the-art and future insights. Food Res Int 2025; 200:115527. [PMID: 39779085 DOI: 10.1016/j.foodres.2024.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Food security issues are becoming more pressing due to the world's rapid population expansion and climate change, which also drive up demand for nutrient-dense commodities like meat and cereals. Conventional agricultural practices, which depend on pesticides, fertilizers, and antibiotics, are exacerbating environmental problems, such as antibiotic resistance. Precision fermentation has become a game-changing technique that uses microorganisms to create high-value food ingredients more efficiently and with less negative environmental impact. This method optimizes microbial strains and improves manufacturing processes by utilizing cutting-edge technologies like metabolic engineering and next-generation sequencing. Crucial microorganisms in this technique are filamentous fungi and yeasts, which produce a wide range of products from lipids to proteins. To support microbial growth, an appropriate media formulation is crucial, and downstream processing guarantees the high-quality product recovery. The precise fermentation industry is expanding due to constant advancements and investments, despite obstacles including high production costs and strict regulations. The increased potential of precise fermentation is demonstrated by the commercial trends, which include large investments and the emergence of profitable companies. This review aims to discuss how Precision fermentation has the potential to completely transform the food production industry by providing sustainable alternatives and strengthening the foundation of an increasingly robust and effective food system as well as mentioned the challenges of its implementation.
Collapse
Affiliation(s)
- Alzira Aparecida Pereira
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Mario Alberto Yaverino-Gutierrez
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Mayara Cortez Monteiro
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Brenda Azevedo Souza
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil
| | - Rakesh Kumar Bachheti
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India; Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Anuj K Chandel
- Renewable Carbon and Biology System (ReCABS) Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil.
| |
Collapse
|
5
|
Malashin I, Martysyuk D, Tynchenko V, Gantimurov A, Semikolenov A, Nelyub V, Borodulin A. Machine Learning-Based Process Optimization in Biopolymer Manufacturing: A Review. Polymers (Basel) 2024; 16:3368. [PMID: 39684112 DOI: 10.3390/polym16233368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The integration of machine learning (ML) into material manufacturing has driven advancements in optimizing biopolymer production processes. ML techniques, applied across various stages of biopolymer production, enable the analysis of complex data generated throughout production, identifying patterns and insights not easily observed through traditional methods. As sustainable alternatives to petrochemical-based plastics, biopolymers present unique challenges due to their reliance on variable bio-based feedstocks and complex processing conditions. This review systematically summarizes the current applications of ML techniques in biopolymer production, aiming to provide a comprehensive reference for future research while highlighting the potential of ML to enhance efficiency, reduce costs, and improve product quality. This review also shows the role of ML algorithms, including supervised, unsupervised, and deep learning algorithms, in optimizing biopolymer manufacturing processes.
Collapse
Affiliation(s)
- Ivan Malashin
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | | | - Vadim Tynchenko
- Bauman Moscow State Technical University, 105005 Moscow, Russia
| | | | | | - Vladimir Nelyub
- Bauman Moscow State Technical University, 105005 Moscow, Russia
- Far Eastern Federal University, 690922 Vladivostok, Russia
| | | |
Collapse
|
6
|
Pang H, Zhang X, Chen C, Ma H, Tan Z, Zhang M, Duan Y, Qin G, Wang Y, Jiao Z, Cai Y. Combined Effects of Lactic Acid Bacteria and Protease on the Fermentation Quality and Microbial Community during 50 Kg Soybean Meal Fermentation Simulating Actual Production Scale. Microorganisms 2024; 12:1339. [PMID: 39065107 PMCID: PMC11278788 DOI: 10.3390/microorganisms12071339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The improvement in the utilization rate and nutritional value of soybean meal (SBM) represents a significant challenge in the feed industry. This study conducted a 50 kg SBM fermentation based on the 300 g small-scale fermentation of SBM in early laboratory research, to explore the combined effects of lactic acid bacteria (LAB) and acid protease on fermentation quality, chemical composition, microbial population, and macromolecular protein degradation during fermentation and aerobic exposure of SBM in simulated actual production. The results demonstrated that the increase in crude protein content and reduction in crude fiber content were considerably more pronounced after fermentation for 30 days (d) and subsequent aerobic exposure, compared to 3 d. It is also noteworthy that the treated group exhibited a greater degree of macromolecular protein degradation relative to the control and 30 d of fermentation relative to 3 d. Furthermore, after 30 d of fermentation, adding LAB and protease significantly inhibited the growth of undesired microbes including coliform bacteria and aerobic bacteria. In the mixed group, the microbial diversity decreased significantly, and Firmicutes replaced Cyanobacteria for bacteria in both groups' fermentation.
Collapse
Affiliation(s)
- Huili Pang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Xinyu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450052, China;
| | - Hao Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Zhongfang Tan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Miao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Yaoke Duan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Yanping Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Zhen Jiao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| | - Yimin Cai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (H.P.); (X.Z.); (H.M.); (Z.T.); (M.Z.); (Y.D.); (G.Q.); (Y.W.)
| |
Collapse
|
7
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
8
|
Wackett LP. A microbial evolutionary approach for a sustainable future. Microb Biotechnol 2023; 16:1895-1899. [PMID: 37602659 PMCID: PMC10527186 DOI: 10.1111/1751-7915.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
With the continued population increase, more sustainable use of water, land, air and chemicals is imperative. Microorganisms will need to be called upon to aid in many sustainability efforts. Prokaryotes are the fastest-evolving cellular life, and most manipulatable via synthetic biology. Moreover, their natural diversity in processing organic and inorganic chemicals, and their survivability in extreme niches, make them prime agents to enlist for solving many of society's pressing problems.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaTwin CitiesMinnesotaUSA
| |
Collapse
|