1
|
Yatera K, Nishida C, Mukae H. Up-to-date nucleic acid assays for diagnosing respiratory infection. Respir Investig 2025; 63:383-393. [PMID: 40107222 DOI: 10.1016/j.resinv.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Nucleic acid assays have been widely used as rapid tests for diagnosing respiratory infections during and after the coronavirus disease 2019 (COVID-19) pandemic. An ideal point-of-care diagnostic must be affordable, sensitive, specific, user-friendly, rapid/robust, equipment-free and deliverable (ASSURED), and in addition to improvements to conventional methods based on polymerase chain reaction (PCR), point-of-care testing aiming for "REASSURED" are emerging through integration with microfluidic technology. Compared to conventional immunoassays, nucleic acid assays, especially rapid nucleic acid assays as point-of-care testing, contribute to improvements in various clinical outcomes, such as diagnostic yield, turnaround time, length of hospital stay, disease treatment, and infection control management. Rapid and diverse development of new nucleic acid-based molecular diagnostic technologies, such as those based on the CRISPR/Cas system or biosensor nucleic acid assays, is expected to become increasingly diverse in the future as point-of-care testing. In addition, laboratory-based DNA sequencing technology has been used to perform microbiome analyses over a wide area and is expected to shed light on the pathological mechanisms of various respiratory infectious diseases. One example of the benefits of nucleic acid amplification analysis methods is their ability to reveal the true nature of the bacterial flora in pneumonia lesions. This has been demonstrated based on the results of 16S ribosomal RNA gene sequencing analyses using bronchoalveolar lavage fluid directly obtained from pneumonia lesions in patients with pneumonia.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Fukuoka, Kitakyushu City, 807-8555, Japan.
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Fukuoka, Kitakyushu City, 807-8555, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
2
|
Govender K, Mafuyeka RT, Lukhwareni A, Meyer P. Comparison of SARS-CoV-2 molecular results from the first two COVID-19 waves in Gauteng. S Afr J Infect Dis 2024; 39:647. [PMID: 39650256 PMCID: PMC11622115 DOI: 10.4102/sajid.v39i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/30/2024] [Indexed: 12/11/2024] Open
Abstract
Background Laboratory-based molecular assays return cycle threshold (Ct) values for each gene target. There is limited hyperlocal information describing the Ct, age and sex trends during the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) waves in South Africa. Objectives To analyse the demographic and Ct value trends of SARS-CoV-2 molecular assays from two South African hospitals. Method The Seegene Allplex 2019-nCoV™ results from the first two waves (June-July 2020 and November 2020-January 2021) from two major hospitals in Gauteng, South Africa, were extracted from the laboratory information system. Demographic variables and Ct values were analysed. Results Overall, 2391 samples were analysed over two waves. In both waves, more women were tested than men; 68.4% versus 31.2% in the first wave and 59.8% versus 39.7% in the second wave. Differences in Ct values among the age groups were non-significant overall; however, most median Ct values in all age groups were < 30. Men had lower median Ct values in the first wave, but this trend reversed in the second wave (p < 0.001). The first wave had significantly lower mean and median Ct values per gene target (p < 0.001). Conclusion Patients tested in the first wave had lower Ct values. All age groups in both waves demonstrated infectivity potential; the demographic analysis agreed with South Africa's coronavirus disease 2019 (COVID-19) epidemiological trends in both waves. Contribution Granular insight into the basic demographic variables and Ct trends of SARS-CoV-2 real-time polymerase chain reaction (RT-PCR) results within and between SARS-CoV-2 waves in South Africa.
Collapse
Affiliation(s)
- Kreshalen Govender
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Virology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Rendani T. Mafuyeka
- Department of Molecular Virology, Faculty of Virology, Ampath Laboratories Inc., Pretoria, South Africa
| | - Azwidowi Lukhwareni
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Virology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Pieter Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
3
|
Li R, Zhao X, Jiang K, Tang J, Yang S, Hu J, Ma X. Performance of the Flash10 COVID-19 point-of-care molecular test. Sci Rep 2024; 14:25622. [PMID: 39465327 PMCID: PMC11514266 DOI: 10.1038/s41598-024-77837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024] Open
Abstract
After the COVID-19 pandemic, fever clinics urgently require rapid nucleic acid tests to enhance their capacity for timely pathogen detection. This study evaluated the analytical performance and clinical utility of the Flash10 SARS-CoV-2 point-of-care test (Flash10 POCT) for detecting SARS-CoV-2 in patients with fever in the adult fever clinic in Beijing Tsinghua Changgung Hospital from August 1 to August 30, 2023. The analytical performance and clinical utility of the Flash10 POCT for detecting SARS-CoV-2 were assessed in 125 patients with fever syndrome in the adult fever clinic. The Flash10 POCT demonstrated an analytical precision of 3.1% for the Ct values of the ORF1ab gene and 2.9% for the Ct values of the N gene in SARS-CoV-2 nucleic acid testing. Furthermore, the Flash10 POCT demonstrated a lower limit of detection (LoD) of 100 copies/mL, with no detected aerosol contamination leakage. Of the 125 patients (median age 61.9 years, 52% male and 48% female), both the Flash10 POCT and RT-PCR tests yielded positive results for 100 patients and negative results for 25 patients (Fisher's exact test, p < 0.0001). The median turn-around-time for the Flash10 POCT was significantly shorter, at 1.05 h, compared to 16.15 h required for RT-PCR tests (Wilcoxon signed rank test, p < 0.0001). The Flash10 POCT showed high analytical performance, achieving a 100% detection rate for SARS-CoV-2 compared to RT-PCR tests, while also exhibiting a significantly shorter turn-around-time. Implementing the Flash10 POCT had the potential to expedite the care of adults presenting with fever.
Collapse
Affiliation(s)
- Runqing Li
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China.
- Laboratory Medicine Department of Tiantongyuan North Community Healthcare Center, Beijing, China.
| | - Xiuying Zhao
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China
| | - Kai Jiang
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China
| | - Jie Tang
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China
| | - Song Yang
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China
| | - Jing Hu
- Laboratory Medicine Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, China
| | - Xuzhu Ma
- Infectious Disease Department of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Lee DH, Nwanochie E, Clayton KN, Wereley ST, Kinzer-Ursem TL, Linnes JC. Real-Time Visualization of HIV-1 RNA Detection Using Loop-Mediated Isothermal Amplification-Enabled Particle Diffusometry. ACS Sens 2024; 9:5541-5549. [PMID: 39377655 DOI: 10.1021/acssensors.4c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Isothermal nucleic acid amplification tests, NAATs, such as reverse transcription-loop-mediated isothermal amplification (RT-LAMP), offer promising capabilities to perform real-time semiquantitative detection of viral pathogens. These tests provide rapid results, utilize simple instrumentation for single-temperature reactions, support efficient user workflows, and are suitable for field use. Herein, we present a novel and robust method for real-time monitoring of HIV-1 RNA RT-LAMP utilizing a novel implementation of particle diffusometry (PD), a diffusivity quantification technique using fluorescent particles, to quantify viral concentration in nuclease-free water. We monitor changes in particle diffusion dynamics of 400 nm fluorescently labeled particles throughout the RT-LAMP of HIV-1 RNA in nuclease-free water, enabling measurement within 20 min and detection of concentrations as low as 25 virus particles per μL. Moreover, in a single-blind study, we demonstrate semiquantitative detection by accurately determining the initial concentration of an unknown HIV-1 RNA within a 10% absolute error margin. These results highlight the potential of real-time PD readout for quantifying HIV-1 RNA via RT-LAMP, offering promise for viral load monitoring of HIV and other chronic infections.
Collapse
Affiliation(s)
- Dong Hoon Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emeka Nwanochie
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Wu MS, Chang PC, Lin PL, Tso CH, Chen HM, Peng YH, Wu PC, Hsu JC, Wang DY. Establishment of national standards of SARS-CoV-2 variants in Taiwan. Heliyon 2024; 10:e38275. [PMID: 39435093 PMCID: PMC11491896 DOI: 10.1016/j.heliyon.2024.e38275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Objectives In response to the pandemic, the Taiwan Food and Drug Administration (TFDA) established an initial SARS-CoV-2 RNA national standard based on the original Wuhan strain. However, with the depletion of the first national standard and continued mutation of the virus, the establishment of new national standards was imminent. Methods Hence, new candidate national standards were established by heat-inactivation for 30 min for six representative strains of SARS-CoV-2, comprising the original strain and five variants with anticipated concentrations of 7.70 Log10 international units (IU)/mL each. To enhance the credibility of these national standards, the TFDA extended invitations to both domestic and international institutions to participate in a collaborative study. A total of eight participants contributed eleven datasets, incorporating two methods and targeting four distinct genes. Results Based on these collective findings, the quantified viral RNA concentrations for each SARS-CoV-2 national standard strain are 7.69, 7.70, 7.69, 7.44, 7.52, and 7.29 Log10 IU/mL with Wuhan, alpha, beta, gamma, delta, and omicron strain, respectively. Conclusions These newly established national standards will continue to be made available to the industry, serving as a fundamental reference for the development and quality control of nucleic acid in vitro diagnostic (IVD) reagents in Taiwan.
Collapse
Affiliation(s)
| | | | - Po-Lin Lin
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chun-Hsi Tso
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsin-Mei Chen
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Hsuan Peng
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Po-Chih Wu
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Jia-Chuan Hsu
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Der-Yuan Wang
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
6
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
7
|
Alhamid G, Tombuloglu H, BenRashed HA, Almessiere MA, Rabaan AA. Ultra-sensitive colorimetric detection of SARS-CoV-2 by novel gold nanoparticle (AuNP)-assisted loop-mediated isothermal amplification (LAMP) and freezing methods. Mikrochim Acta 2024; 191:339. [PMID: 38789855 DOI: 10.1007/s00604-024-06422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of isothermal reaction conditions and high sensitivity. However, the LAMP reactions are prone to producing false-positive results and thus are usually less reliable. This study demonstrates a gold nanoparticle (AuNP)-assisted colorimetric LAMP technique for diagnosing SARS-CoV-2, which aims to overcome the false-positive results. The AuNPs were functionalized with E gene probes, specifically tailored to bind to the amplified E-gene LAMP product, using the freezing method. Varied salt concentration and AuNP/probe combinations were tested for the highest visual performance. The experiments were conducted on synthetic SARS-CoV-2 RNA (Omicron variant), as well as on clinical samples. The assay showed an exceptional sensitivity of 8.05 fg of LAMP amplicon mixture (0.537 fg/µL). The average reaction time was ~ 30 min. In conclusion, AuNP-assisted LAMP detection will not identify any potential unspecific amplification, which helps to improve the efficiency and reliability of LAMP assays in point-of-care applications. The freezing method to functionalize the AuNPs with probes simplifies the assay, which can be utilized in further diagnostic studies.
Collapse
Affiliation(s)
- Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia.
| | - Hajar A BenRashed
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ali A Rabaan
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia
| |
Collapse
|
8
|
Ngoc LTN, Lee YC. Current Trends in RNA Virus Detection via Nucleic Acid Isothermal Amplification-Based Platforms. BIOSENSORS 2024; 14:97. [PMID: 38392016 PMCID: PMC10886876 DOI: 10.3390/bios14020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Ribonucleic acid (RNA) viruses are one of the major classes of pathogens that cause human diseases. The conventional method to detect RNA viruses is real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), but it has some limitations. It is expensive and time-consuming, with infrastructure and trained personnel requirements. Its high throughput requires sophisticated automation and large-scale infrastructure. Isothermal amplification methods have been explored as an alternative to address these challenges. These methods are rapid, user-friendly, low-cost, can be performed in less specialized settings, and are highly accurate for detecting RNA viruses. Microfluidic technology provides an ideal platform for performing virus diagnostic tests, including sample preparation, immunoassays, and nucleic acid-based assays. Among these techniques, nucleic acid isothermal amplification methods have been widely integrated with microfluidic platforms for RNA virus detection owing to their simplicity, sensitivity, selectivity, and short analysis time. This review summarizes some common isothermal amplification methods for RNA viruses. It also describes commercialized devices and kits that use isothermal amplification techniques for SARS-CoV-2 detection. Furthermore, the most recent applications of isothermal amplification-based microfluidic platforms for RNA virus detection are discussed in this article.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Akalın P, Yazgan-Karataş A. Development of a nucleic acid-based lateral flow device as a reliable diagnostic tool for respiratory viral infections. MethodsX 2023; 11:102372. [PMID: 37744884 PMCID: PMC10511794 DOI: 10.1016/j.mex.2023.102372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Viral infections continue to pose a significant threat to the public health, leading to high morbidity and mortality rates worldwide. To combat these challenges, early detection and treatment are essential in reducing hospitalizations and preventing severe complications. Simple, inexpensive, and sensitive diagnostic methods are in constant demand in many areas. In this study, we report the development of a nucleic acid-based lateral flow immunoassay device (NALFIA) and demonstrate its successful application in conjunction with a multiplexed reverse-transcription loop-mediated isothermal amplification assay (LAMP) for the detection of SARS-CoV-2 and influenza. In our approach the NALFIA part preparation is independent of the target, and has the potential to ensure widespread use in diagnostics particularly where testing speed is critical such as in respiratory viral infections.•Simple, inexpensive, sensitive and reliable rapid diagnostic tool.•Target independent design.•Effective use for respiratory samples due to practical sample extraction.
Collapse
Affiliation(s)
- Pınar Akalın
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ayten Yazgan-Karataş
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak 34469 Istanbul, Turkey
| |
Collapse
|
10
|
Tavares ER, de Lima TF, Bartolomeu-Gonçalves G, de Castro IM, de Lima DG, Borges PHG, Nakazato G, Kobayashi RKT, Venancio EJ, Tarley CRT, de Almeida ERD, Pelisson M, Vespero EC, Simão ANC, Perugini MRE, Kerbauy G, Fornazieri MA, Tognim MCB, Góes VM, de Souza TDACB, Oliveira DBL, Durigon EL, Faccin-Galhardi LC, Yamauchi LM, Yamada-Ogatta SF. Development of a Melting-Curve-Based Multiplex Real-Time PCR Assay for the Simultaneous Detection of Viruses Causing Respiratory Infection. Microorganisms 2023; 11:2692. [PMID: 38004704 PMCID: PMC10672821 DOI: 10.3390/microorganisms11112692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The prompt and accurate identification of the etiological agents of viral respiratory infections is a critical measure in mitigating outbreaks. In this study, we developed and clinically evaluated a novel melting-curve-based multiplex real-time PCR (M-m-qPCR) assay targeting the RNA-dependent RNA polymerase (RdRp) and nucleocapsid phosphoprotein N of SARS-CoV-2, the Matrix protein 2 of the Influenza A virus, the RdRp domain of the L protein from the Human Respiratory Syncytial Virus, and the polyprotein from Rhinovirus B genes. The analytical performance of the M-m-qPCR underwent assessment using in silico analysis and a panel of reference and clinical strains, encompassing viral, bacterial, and fungal pathogens, exhibiting 100% specificity. Moreover, the assay showed a detection limit of 10 copies per reaction for all targeted pathogens using the positive controls. To validate its applicability, the assay was further tested in simulated nasal fluid spiked with the viruses mentioned above, followed by validation on nasopharyngeal swabs collected from 811 individuals. Among them, 13.4% (109/811) tested positive for SARS-CoV-2, and 1.1% (9/811) tested positive for Influenza A. Notably, these results showed 100% concordance with those obtained using a commercial kit. Therefore, the M-m-qPCR exhibits great potential for the routine screening of these respiratory viral pathogens.
Collapse
Affiliation(s)
- Eliandro Reis Tavares
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
| | - Thiago Ferreira de Lima
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Guilherme Bartolomeu-Gonçalves
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Isabela Madeira de Castro
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Daniel Gaiotto de Lima
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
| | - Paulo Henrique Guilherme Borges
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Gerson Nakazato
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Renata Katsuko Takayama Kobayashi
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Emerson José Venancio
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | | | | | - Marsileni Pelisson
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Eliana Carolina Vespero
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Andrea Name Colado Simão
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Márcia Regina Eches Perugini
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Gilselena Kerbauy
- Graduate Program in Nursing, Department of Nursing, State University of Londrina, Londrina 86038-350, Brazil;
| | - Marco Aurélio Fornazieri
- Graduate Program in Health Sciences, Department of Clinical Surgery, State University of Londrina, Londrina 86038-350, Brazil;
| | | | | | | | - Danielle Bruna Leal Oliveira
- Albert Einstein Hospital, São Paulo 05652-900, Brazil;
- Laboratory of Clinical and Molecular Virology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Lígia Carla Faccin-Galhardi
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Lucy Megumi Yamauchi
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Sueli Fumie Yamada-Ogatta
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| |
Collapse
|