1
|
Palese F, Rakotobe M, Zurzolo C. Transforming the concept of connectivity: unveiling tunneling nanotube biology and their roles in brain development and neurodegeneration. Physiol Rev 2025; 105:1823-1865. [PMID: 40067081 DOI: 10.1152/physrev.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 05/08/2025] Open
Abstract
Tunneling nanotubes (TNTs) are thin tubular membrane protrusions that connect distant cells, generating a complex cellular network. Over the past few decades, research on TNTs has provided important insights into their biology, including structural composition, formation mechanisms, modulators, and functionality. It has been discovered that TNTs allow cytoplasmic continuity between connected cells, facilitating fast intercellular communication via both passive and active exchange of materials. These features are pivotal in the nervous system, where rapid processing of inputs is physiologically required. TNTs have been implicated in the progression of neurodegenerative diseases and cancer in various in vitro models, and TNT-like structures have also been observed in the developing brain and in vivo. This highlights their significant role in pathophysiological processes. In this comprehensive review we aim to provide an extensive overview of TNTs, starting from key structural features and mechanisms of formation and describing the main experimental techniques used to detect these structures both in vitro and in vivo. We focus primarily on the nervous system, where the discovery of TNTs could prompt a reconsideration of the brain functioning as individual units (the neuronal theory of Cajal) versus neurons being physically connected, as Golgi believed. We illustrate the involvement of TNTs in brain development and neurodegenerative states and highlight the limitations and future research needs in this field.
Collapse
Affiliation(s)
- Francesca Palese
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Malalaniaina Rakotobe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Fournier S, Clarhaut J, Cronier L, Monvoisin A. GJA1-20k, a Short Isoform of Connexin43, from Its Discovery to Its Potential Implication in Cancer Progression. Cells 2025; 14:180. [PMID: 39936974 PMCID: PMC11817742 DOI: 10.3390/cells14030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
The Connexin43 transmembrane protein (Cx43), encoded by the GJA1 gene, is a member of a multigenic family of proteins that oligomerize to form hemichannels and intercellular channels, allowing gap junctional intercellular communication between adjacent cells or communication between the intracellular and extracellular compartments. Cx43 has long been shown to play a significant but complex role in cancer development, acting as a tumor suppressor and/or tumor promoter. The effects of Cx43 are associated with both channel-dependent and -independent functionalities and differ depending on the expression level, subcellular location and the considered stage of cancer progression. Recently, six isoforms of Cx43 have been described and one of them, called GJA1-20k, has also been found to be expressed in cancer cells. This isoform is generated by alternative translation and corresponds to the end part of the fourth transmembrane domain and the entire carboxyl-terminal (CT) domain. Initial studies in the cardiac model implicated GJA1-20k in the trafficking of full-length Cx43 to the plasma membrane, in cytoskeletal dynamics and in mitochondrial fission and subcellular distribution. As these processes are associated with cancer progression, a potential link between Cx43 functions, mitochondrial activity and GJA1-20k expression can be postulated in this context. This review synthetizes the current knowledge on GJA1-20k and its potential involvement in processes related to epithelial-to-mesenchymal transition (EMT) and the proliferation, dissemination and quiescence of cancer cells. Particular emphasis is placed on the putative roles of GJA1-20k in full-length Cx43 exportation to the plasma membrane, mitochondrial activity and functions originally attributed to the CT domain.
Collapse
Affiliation(s)
- Sarah Fournier
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| | - Jonathan Clarhaut
- Pharmacology of Antimicrobial Agents and Antibioresistance (PHAR2), INSERM U1070, University of Poitiers; 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
- University Hospital Center of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Laurent Cronier
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| | - Arnaud Monvoisin
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| |
Collapse
|
3
|
Zhang M, Wu J, Cai K, Liu Y, Lu B, Zhang J, Xu J, Gu C, Chen T. From dysfunction to healing: advances in mitochondrial therapy for Osteoarthritis. J Transl Med 2024; 22:1013. [PMID: 39529128 PMCID: PMC11552139 DOI: 10.1186/s12967-024-05799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint condition characterised by cartilage deterioration and changes in bone morphology, resulting in pain and impaired joint mobility. Investigation into the pathophysiological mechanisms underlying OA has highlighted the significance of mitochondrial dysfunction in its progression. Mitochondria, which are cellular organelles, play a crucial role in regulating energy metabolism, generating reactive oxygen species, and facilitating essential biological processes including apoptosis. In recent years, the utilisation of exogenous drugs and MT to improve mitochondrial function in chondrocytes has shown great promise in OA treatment. Numerous studies have investigated the potential of stem cells and extracellular vesicles in mitochondrial transfer. This review aims to explore the underlying mechanisms of mitochondrial dysfunction in OA and assess the progress in utilising mitochondrial transfer as a therapeutic approach for this disease.
Collapse
Affiliation(s)
- Minghang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Junfeng Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Kehan Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Botao Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Jiaojiao Zhang
- Department of Gynaecology and Obstetrics Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China
| | - Chenxi Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China.
| | - Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450042, China.
| |
Collapse
|
4
|
Pal-Ghosh S, Karpinski BA, Datta-Majumdar H, Datta S, Dimri S, Hally J, Wehmeyer H, Stepp MA. Mechanisms Regulating Mitochondrial Transfer in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 39504055 PMCID: PMC11549930 DOI: 10.1167/iovs.65.13.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 11/11/2024] Open
Abstract
Purpose The intraepithelial corneal nerves (ICNs) innervating the cornea are essential to corneal epithelial cell homeostasis. Rho-associated kinase (ROCK) inhibitors (RIs) have been reported to play roles in neuron survival after injury and in mitochondrial transfer between corneal epithelial cells. In this study, the mechanisms human corneal limbal epithelial (HCLE) cells use to control intercellular mitochondrial transfer are assessed. Methods Mitotracker and AAV1 mitotag eGFPmCherry were used to allow us to study mitochondrial transfer between HCLE cells and neurons in co-cultures and in HCLE cultures. A mitochondrial transfer assay was developed using HCLE cells to quantify the impact of cell stress and inhibition of phagocytosis, gap junctions, and ROCK on mitochondrial transfer, cell adhesion, migration, matrix deposition, and mitochondrial content. Results Bidirectional mitochondrial transfer occurs between HCLE cells and neurons. Mitochondrial transfer among HCLE cells is inhibited when gap junction function is reduced and enhanced by acid stress and by inhibition of either phagocytosis or ROCK. Media conditioned by RI-treated cells stimulates cell adhesion and mitochondrial transfer. Conclusions Maximal mitochondrial transfer takes place when gap junctions are functional, when ROCK and phagocytosis are inhibited, and when cells are stressed by low pH media. Treatments that reduce mitochondrial content increase HCLE cell mitochondrial transfer. ROCK inhibition in co-cultures causes the release and adhesion of mitochondria to substrates where they can be engulfed by migrating HCLE cells and growing axons and their growth cones.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Beverly A. Karpinski
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Himani Datta-Majumdar
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Soneha Datta
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Shelly Dimri
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Jordan Hally
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Hugo Wehmeyer
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
- Department of Ophthalmology, GW School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
5
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Irwin RM, Thomas MA, Fahey MJ, Mayán MD, Smyth JW, Delco ML. Connexin 43 regulates intercellular mitochondrial transfer from human mesenchymal stromal cells to chondrocytes. Stem Cell Res Ther 2024; 15:359. [PMID: 39390589 PMCID: PMC11468299 DOI: 10.1186/s13287-024-03932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The phenomenon of intercellular mitochondrial transfer from mesenchymal stromal cells (MSCs) has shown promise for improving tissue healing after injury and has potential for treating degenerative diseases like osteoarthritis (OA). Recently MSC to chondrocyte mitochondrial transfer has been documented, but the mechanism of transfer is unknown. Full-length connexin 43 (Cx43, encoded by GJA1) and the truncated, internally translated isoform GJA1-20k have been implicated in mitochondrial transfer between highly oxidative cells, but have not been explored in orthopaedic tissues. Here, our goal was to investigate the role of Cx43 in MSC to chondrocyte mitochondrial transfer. In this study, we tested the hypotheses that (a) mitochondrial transfer from MSCs to chondrocytes is increased when chondrocytes are under oxidative stress and (b) MSC Cx43 expression mediates mitochondrial transfer to chondrocytes. METHODS Oxidative stress was induced in immortalized human chondrocytes using tert-Butyl hydroperoxide (t-BHP) and cells were evaluated for mitochondrial membrane depolarization and reactive oxygen species (ROS) production. Human bone-marrow derived MSCs were transduced for mitochondrial fluorescence using lentiviral vectors. MSC Cx43 expression was knocked down using siRNA or overexpressed (GJA1 + and GJA1-20k+) using lentiviral transduction. Chondrocytes and MSCs were co-cultured for 24 h in direct contact or separated using transwells. Mitochondrial transfer was quantified using flow cytometry. Co-cultures were fixed and stained for actin and Cx43 to visualize cell-cell interactions during transfer. RESULTS Mitochondrial transfer was significantly higher in t-BHP-stressed chondrocytes. Contact co-cultures had significantly higher mitochondrial transfer compared to transwell co-cultures. Confocal images showed direct cell contacts between MSCs and chondrocytes where Cx43 staining was enriched at the terminal ends of actin cellular extensions containing mitochondria in MSCs. MSC Cx43 expression was associated with the magnitude of mitochondrial transfer to chondrocytes; knocking down Cx43 significantly decreased transfer while Cx43 overexpression significantly increased transfer. Interestingly, GJA1-20k expression was highly correlated with incidence of mitochondrial transfer from MSCs to chondrocytes. CONCLUSIONS Overexpression of GJA1-20k in MSCs increases mitochondrial transfer to chondrocytes, highlighting GJA1-20k as a potential target for promoting mitochondrial transfer from MSCs as a regenerative therapy for cartilage tissue repair in OA.
Collapse
Affiliation(s)
- Rebecca M Irwin
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew A Thomas
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Megan J Fahey
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Vascular and Heart Research, FBRI at VTC, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle L Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Ding F, Zhou M, Ren Y, Li Y, Xiang J, Li Y, Yu J, Hong Y, Fu Z, Li H, Pan Z, Liu B. Mitochondrial Extracellular Vesicles: A Promising Avenue for Diagnosing and Treating Lung Diseases. ACS NANO 2024; 18:25372-25404. [PMID: 39225081 DOI: 10.1021/acsnano.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mitochondria, pivotal organelles governing cellular biosynthesis, energy metabolism, and signal transduction, maintain dynamic equilibrium through processes such as biogenesis, fusion, fission, and mitophagy. Growing evidence implicates mitochondrial dysfunction in a spectrum of respiratory diseases including acute lung injury/acute respiratory distress syndrome, bronchial asthma, pulmonary fibrosis, chronic obstructive pulmonary disease, and lung cancer. Consequently, identifying methods capable of ameliorating damaged mitochondrial function is crucial for the treatment of pulmonary diseases. Extracellular vesicles (EVs), nanosized membrane vesicles released by cells into the extracellular space, facilitate intercellular communication by transferring bioactive substances or signals between cells or organs. Recent studies have identified abundant mitochondrial components within specific subsets of EVs, termed mitochondrial extracellular vesicles (mitoEVs), whose contents and compositions vary with disease progression. Moreover, mitoEVs have demonstrated reparative mitochondrial functions in injured recipient cells. However, a comprehensive understanding of mitoEVs is currently lacking, limiting their clinical translation prospects. This Review explores the biogenesis, classification, functional mitochondrial cargo, and biological effects of mitoEVs, with a focus on their role in pulmonary diseases. Emphasis is placed on their potential as biological markers and innovative therapeutic strategies in pulmonary diseases, offering fresh insights for mechanistic studies and drug development in various pulmonary disorders.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mi Zhou
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yinying Ren
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinying Xiang
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yuehan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Ying Hong
- Infection, Immunity, Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Zhou Fu
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hongbo Li
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhengxia Pan
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bo Liu
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
8
|
Frisbie L, Pressimone C, Dyer E, Baruwal R, Garcia G, St Croix C, Watkins S, Calderone M, Gorecki G, Javed Z, Atiya HI, Hempel N, Pearson A, Coffman LG. Carcinoma-associated mesenchymal stem cells promote ovarian cancer heterogeneity and metastasis through mitochondrial transfer. Cell Rep 2024; 43:114551. [PMID: 39067022 PMCID: PMC11420855 DOI: 10.1016/j.celrep.2024.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Ovarian cancer is characterized by early metastatic spread. This study demonstrates that carcinoma-associated mesenchymal stromal cells (CA-MSCs) enhance metastasis by increasing tumor cell heterogeneity through mitochondrial donation. CA-MSC mitochondrial donation preferentially occurs in ovarian cancer cells with low levels of mitochondria ("mito poor"). CA-MSC mitochondrial donation rescues the phenotype of mito poor cells, restoring their proliferative capacity, resistance to chemotherapy, and cellular respiration. Receipt of CA-MSC-derived mitochondria induces tumor cell transcriptional changes leading to the secretion of ANGPTL3, which enhances the proliferation of tumor cells without CA-MSC mitochondria, thus amplifying the impact of mitochondrial transfer. Donated CA-MSC mitochondrial DNA persisted in recipient tumor cells for at least 14 days. CA-MSC mitochondrial donation occurs in vivo, enhancing tumor cell heterogeneity and decreasing mouse survival. Collectively, this work identifies CA-MSC mitochondrial transfer as a critical mediator of ovarian cancer cell survival, heterogeneity, and metastasis and presents a unique therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emma Dyer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Roja Baruwal
- Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geyon Garcia
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Calderone
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Grace Gorecki
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zaineb Javed
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Huda I Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alexander Pearson
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA; Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Lan G Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Rehman A, Marigliano M, Torsiello M, La Noce M, Papaccio G, Tirino V, Del Vecchio V, Papaccio F. Adipose Stem Cells and Their Interplay with Cancer Cells and Mitochondrial Reservoir: A New Promising Target. Cancers (Basel) 2024; 16:2769. [PMID: 39123496 PMCID: PMC11311803 DOI: 10.3390/cancers16152769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ASCs) significantly influence tumor progression within the tumor microenvironment (TME). This review examines the pro-tumorigenic roles of ASCs, focusing on paracrine signaling, direct cell-cell interactions, and immunomodulation. ASC-mediated mitochondrial transfer through tunneling nanotubes (TNTs) and gap junctions (GJs) plays a significant role in enhancing cancer cell survival and metabolism. Cancer cells with dysfunctional mitochondria acquire mitochondria from ASCs to meet their metabolic needs and thrive in the TME. Targeting mitochondrial transfer, modulating ASC function, and influencing metabolic pathways are potential therapeutic strategies. However, challenges like TME complexity, specificity, safety concerns, and resistance mechanisms must be addressed. Disrupting the ASC-cancer cell-mitochondria axis offers a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Martina Marigliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende 43, 84081 Baronissi, SA, Italy;
| | - Martina Torsiello
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Marcella La Noce
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, NA, Italy; (A.R.); (M.T.); (M.L.N.); (V.T.); (V.D.V.)
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende 43, 84081 Baronissi, SA, Italy;
| |
Collapse
|
10
|
Iorio R, Petricca S, Mattei V, Delle Monache S. Horizontal mitochondrial transfer as a novel bioenergetic tool for mesenchymal stromal/stem cells: molecular mechanisms and therapeutic potential in a variety of diseases. J Transl Med 2024; 22:491. [PMID: 38790026 PMCID: PMC11127344 DOI: 10.1186/s12967-024-05047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 05/26/2024] Open
Abstract
Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.
Collapse
Affiliation(s)
- Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, Della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
11
|
Irwin RM, Thomas MA, Fahey MJ, Mayán MD, Smyth JW, Delco ML. Connexin 43 Regulates Intercellular Mitochondrial Transfer from Human Mesenchymal Stromal Cells to Chondrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585552. [PMID: 38562828 PMCID: PMC10983985 DOI: 10.1101/2024.03.18.585552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The phenomenon of intercellular mitochondrial transfer from mesenchymal stromal cells (MSCs) has shown promise for improving tissue healing after injury and has potential for treating degenerative diseases like osteoarthritis (OA). Recently MSC to chondrocyte mitochondrial transfer has been documented, but the mechanism of transfer is unknown. Full-length connexin43 (Cx43, encoded by GJA1 ) and the truncated internally translated isoform GJA1-20k have been implicated in mitochondrial transfer between highly oxidative cells, but have not been explored in orthopaedic tissues. Here, our goal was to investigate the role of Cx43 in MSC to chondrocyte mitochondrial transfer. In this study, we tested the hypotheses that (a) mitochondrial transfer from MSCs to chondrocytes is increased when chondrocytes are under oxidative stress and (b) MSC Cx43 expression mediates mitochondrial transfer to chondrocytes. Methods Oxidative stress was induced in immortalized human chondrocytes using tert-Butyl hydroperoxide (t-BHP) and cells were evaluated for mitochondrial membrane depolarization and reactive oxygen species (ROS) production. Human bone-marrow derived MSCs were transduced for mitochondrial fluorescence using lentiviral vectors. MSC Cx43 expression was knocked down using siRNA or overexpressed (GJA1+ and GJA1-20k+) using lentiviral transduction. Chondrocytes and MSCs were co-cultured for 24 hrs in direct contact or separated using transwells. Mitochondrial transfer was quantified using flow cytometry. Co-cultures were fixed and stained for actin and Cx43 to visualize cell-cell interactions during transfer. Results Mitochondrial transfer was significantly higher in t-BHP-stressed chondrocytes. Contact co-cultures had significantly higher mitochondrial transfer compared to transwell co-cultures. Confocal images showed direct cell contacts between MSCs and chondrocytes where Cx43 staining was enriched at the terminal ends of actin cellular extensions containing mitochondria in MSCs. MSC Cx43 expression was associated with the magnitude of mitochondrial transfer to chondrocytes; knocking down Cx43 significantly decreased transfer while Cx43 overexpression significantly increased transfer. Interestingly, GJA1-20k expression was highly correlated with incidence of mitochondrial transfer from MSCs to chondrocytes. Conclusions Overexpression of GJA1-20k in MSCs increases mitochondrial transfer to chondrocytes, highlighting GJA1-20k as a potential target for promoting mitochondrial transfer from MSCs as a regenerative therapy for cartilage tissue repair in OA.
Collapse
|
12
|
Hu C, Shi Z, Liu X, Sun C. The Research Progress of Mitochondrial Transplantation in the Treatment of Mitochondrial Defective Diseases. Int J Mol Sci 2024; 25:1175. [PMID: 38256247 PMCID: PMC10816172 DOI: 10.3390/ijms25021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles that are involved in energy production, apoptosis, and signaling in eukaryotic cells. Several studies conducted over the past decades have correlated mitochondrial dysfunction with various diseases, including cerebral ischemia, myocardial ischemia-reperfusion, and cancer. Mitochondrial transplantation entails importing intact mitochondria from healthy tissues into diseased tissues with damaged mitochondria to rescue the injured cells. In this review, the different mitochondrial transplantation techniques and their clinical applications have been discussed. In addition, the challenges and future directions pertaining to mitochondrial transplantation and its potential in the treatment of diseases with defective mitochondria have been summarized.
Collapse
Affiliation(s)
- Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Liu L, Yang J, Otani Y, Shiga T, Yamaguchi A, Oda Y, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, Ishihara T, Matsuzaki Y, Akamatsu W, Fujitani M, Taketani T. MELAS-Derived Neurons Functionally Improve by Mitochondrial Transfer from Highly Purified Mesenchymal Stem Cells (REC). Int J Mol Sci 2023; 24:17186. [PMID: 38139018 PMCID: PMC10742994 DOI: 10.3390/ijms242417186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most common maternally inherited mitochondrial diseases accompanied by neuronal damage due to defects in the oxidative phosphorylation system. There is no established treatment. Our previous study reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated mitochondrial transfer significantly restored mitochondrial function, including mitochondrial membrane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate. Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exogenous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction in MELAS.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Jiahao Yang
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (Y.O.); (M.F.)
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Yasuaki Oda
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Miho Hattori
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Tsukimi Goto
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
- Clinical Laboratory Division, Shimane University Hospital, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Shuichi Ishibashi
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Yuki Kawashima-Sonoyama
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| | - Takaya Ishihara
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (T.I.); (Y.M.)
| | - Yumi Matsuzaki
- Department of Life Science, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (T.I.); (Y.M.)
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.S.); (A.Y.); (W.A.)
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (Y.O.); (M.F.)
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan; (L.L.); (J.Y.); (Y.O.); (M.H.); (T.G.); (Y.K.-S.)
| |
Collapse
|
14
|
Mukkala AN, Jerkic M, Khan Z, Szaszi K, Kapus A, Rotstein O. Therapeutic Effects of Mesenchymal Stromal Cells Require Mitochondrial Transfer and Quality Control. Int J Mol Sci 2023; 24:15788. [PMID: 37958771 PMCID: PMC10647450 DOI: 10.3390/ijms242115788] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Due to their beneficial effects in an array of diseases, Mesenchymal Stromal Cells (MSCs) have been the focus of intense preclinical research and clinical implementation for decades. MSCs have multilineage differentiation capacity, support hematopoiesis, secrete pro-regenerative factors and exert immunoregulatory functions promoting homeostasis and the resolution of injury/inflammation. The main effects of MSCs include modulation of immune cells (macrophages, neutrophils, and lymphocytes), secretion of antimicrobial peptides, and transfer of mitochondria (Mt) to injured cells. These actions can be enhanced by priming (i.e., licensing) MSCs prior to exposure to deleterious microenvironments. Preclinical evidence suggests that MSCs can exert therapeutic effects in a variety of pathological states, including cardiac, respiratory, hepatic, renal, and neurological diseases. One of the key emerging beneficial actions of MSCs is the improvement of mitochondrial functions in the injured tissues by enhancing mitochondrial quality control (MQC). Recent advances in the understanding of cellular MQC, including mitochondrial biogenesis, mitophagy, fission, and fusion, helped uncover how MSCs enhance these processes. Specifically, MSCs have been suggested to regulate peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α)-dependent biogenesis, Parkin-dependent mitophagy, and Mitofusins (Mfn1/2) or Dynamin Related Protein-1 (Drp1)-mediated fission/fusion. In addition, previous studies also verified mitochondrial transfer from MSCs through tunneling nanotubes and via microvesicular transport. Combined, these effects improve mitochondrial functions, thereby contributing to the resolution of injury and inflammation. Thus, uncovering how MSCs affect MQC opens new therapeutic avenues for organ injury, and the transplantation of MSC-derived mitochondria to injured tissues might represent an attractive new therapeutic approach.
Collapse
Affiliation(s)
- Avinash Naraiah Mukkala
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mirjana Jerkic
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
| | - Zahra Khan
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katalin Szaszi
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Andras Kapus
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ori Rotstein
- Unity Health Toronto, The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada; (A.N.M.); (Z.K.); (K.S.); (A.K.); (O.R.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|