1
|
Zhao Q, Dong G, Zhang X, Gao X, Li H, Guo Z, Gong L, Yang H. Unraveling the mechanism of core prescription in primary liver cancer: integrative analysis through data mining, network pharmacology, and molecular simulation. In Silico Pharmacol 2025; 13:63. [PMID: 40255256 PMCID: PMC12003234 DOI: 10.1007/s40203-025-00352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
This study aims to identify core Traditional Chinese Medicine compound prescriptions (TCM CPs) for Primary Liver Cancer (PLC) and their underlying mechanisms. A comprehensive search was conducted using China National Knowledge Infrastructure (CNKI) and the Chinese Medical Code V5.0, identifying 151 TCM CPs. Medication frequency and association rules were analyzed with TCMICS V3.0, while active compounds were identified via TCMSP and TCMIP V2.0. Targets were predicted using Swiss Target Prediction, and disease targets from DisGeNET, OMIM, and GeneCards were cross-referenced. A protein-protein interaction (PPI) network was constructed, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using DAVID. In the process of studying active compounds, an orthogonal experiment was carried out on the extraction process of relevant herbs. The results of the orthogonal experiment and range analysis showed that for the extraction rate of the extract and the content of paeoniflorin, the decoction cycles had the most significant impact, followed by soaking time and water volume. The optimal extraction conditions were determined as soaking time of 30 min, water volume of tenfold, and 3 decoction cycles. Under these conditions, the extract yield reached 42.49%, and the paeoniflorin content was 73.60 mg/25.02 g crude herb (equivalent to 2.94 mg/g). ANOVA analysis further confirmed the significance of these factors. The results revealed 109 common targets between TCM component targets and disease targets, with key targets including STAT3, SRC, AKT1, HRAS, and PIK3CA. Molecular docking showed strong binding affinities of paeoniflorin and 3,5,6,7-tetramethoxy-2-(3,4,5-trimethoxyphenyl) chromone to PLC targets, with ADME predictions favoring paeoniflorin. Furthermore, Molecular Dynamics (MD) simulations revealed that paeoniflorin maintains stable binding to the target proteins, demonstrating promising conformational stability. The CCK-8 assay demonstrated that the core TCM CP exerted a dose-dependent inhibitory effect on HepG2 cells. After 24 h of intervention, the IC50 values of paeoniflorin and the TCM CP on HepG2 cells were 17.58 μg/mL and 120.5 μg/mL, respectively, which confirmed their anti-proliferative activity against PLC. This study identifies key active compounds and investigates their roles in modulating the Ras/Raf/MEK/ERK, AKT/NF-κB, and JAK-STAT signaling pathways, offering valuable insights into the therapeutic potential of TCM for PLC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00352-2.
Collapse
Affiliation(s)
- Qingsi Zhao
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Gaoyue Dong
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Xinyue Zhang
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Xing Gao
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Hongyu Li
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Zhongyuan Guo
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046 Henan China
- Institue of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Leilei Gong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026 China
| | - Hong Yang
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| |
Collapse
|
2
|
Tong H, Zhao Y, Cui Y, Yao J, Zhang T. Multi-omic studies on the pathogenesis of Sepsis. J Transl Med 2025; 23:361. [PMID: 40128726 PMCID: PMC11934817 DOI: 10.1186/s12967-025-06366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/08/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening inflammatory condition, and its underlying genetic mechanisms are not yet fully elucidated. We applied methods such as Mendelian randomization (MR), genetic correlation analysis, and colocalization analysis to integrate multi-omics data and explore the relationship between genetically associated genes and sepsis, as well as sepsis-related mortality, with the goal of identifying key genetic factors and their potential mechanistic pathways. METHODS To identify therapeutic targets for sepsis and sepsis-related mortality, we conducted an MR analysis on 11,643 sepsis cases and 1,896 cases of 28-day sepsis mortality from the UK Biobank cohort. The exposure data consisted of 15,944 potential druggable genes (expression quantitative trait loci, eQTL) and 4,907 plasma proteins (protein quantitative trait loci, pQTL). We then performed sensitivity analysis, SMR analysis, reverse MR analysis, genetic correlation analysis, colocalization analysis, enrichment analysis, and protein-protein interaction network analysis on the overlapping genes. Validation was conducted using 17,133 sepsis cases from FinnGen R12. Drug prediction and molecular docking were subsequently used to further assess the therapeutic potential of the identified drug targets, while PheWAS was used to evaluate potential side effects. Finally, mediation analysis was conducted to identify the mediating role of related metabolites. RESULTS The MR analysis results identified a significant causal relationship between 24 genes and sepsis. The robustness of these causal associations was further strengthened by SMR analysis, sensitivity analysis, and reverse MR analysis. Genetic correlation analysis revealed that only two of these genes were genetically correlated with sepsis. Colocalization analysis showed that only one gene was closely associated with sepsis, while validation using the FinnGen dataset identified three genes. In the MR analysis of 28-day sepsis mortality, seven genes were found to have significant associations, with reverse MR analysis excluding one gene. The remaining genes passed sensitivity analysis, with no significant genes identified in genetic correlation and colocalization analyses. Molecular docking demonstrated excellent binding affinity between drugs and proteins with available structural data. PheWAS at the gene level did not reveal any potential side effects of the related drugs. CONCLUSIONS The identified drug targets, associated pathways, and metabolites have enhanced our understanding of the complex relationships between genes and sepsis. These genes and metabolites can serve as effective targets for sepsis treatment, paving new pathways in this field and laying a foundation for future research.
Collapse
Affiliation(s)
- Hongjie Tong
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhang Zhao
- Department of Neurology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ying Cui
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiali Yao
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
3
|
Wen S, Han Y, Li Y, Zhan D. Therapeutic Mechanisms of Medicine Food Homology Plants in Alzheimer's Disease: Insights from Network Pharmacology, Machine Learning, and Molecular Docking. Int J Mol Sci 2025; 26:2121. [PMID: 40076742 PMCID: PMC11899993 DOI: 10.3390/ijms26052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a gradual decline in cognitive function. Currently, there are no effective treatments for this condition. Medicine food homology plants have gained increasing attention as potential natural treatments for AD because of their nutritional value and therapeutic benefits. In this work, we aimed to provide a deeper understanding of how medicine food homology plants may help alleviate or potentially treat AD by identifying key targets, pathways, and small molecule compounds from 10 medicine food homology plants that play an important role in this process. Using network pharmacology, we identified 623 common targets between AD and the compounds from the selected 10 plants, including crucial proteins such as STAT3, IL6, TNF, and IL1B. Additionally, the small molecules from the selected plants were grouped into four clusters using hierarchical clustering. The ConPlex algorithm was then applied to predict the binding capabilities of these small molecules to the key protein targets. Cluster 3 showed superior predicted binding capabilities to STAT3, TNF, and IL1B, which was further validated by molecular docking. Scaffold analysis of small molecules in Cluster 3 revealed that those with a steroid-like core-comprising three fused six-membered rings and one five-membered ring with a carbon-carbon double bond-exhibited better predicted binding affinities and were potential triple-target inhibitors. Among them, MOL005439, MOL000953, and MOL005438 were identified as the top-performing compounds. This study highlights the potential of medicine food homology plants as a source of active compounds that could be developed into new drugs for AD treatment. However, further pharmacokinetic studies are essential to assess their efficacy and minimize side effects.
Collapse
Affiliation(s)
- Shuran Wen
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China;
| | - Ye Han
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China;
| | - You Li
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China;
| | - Dongling Zhan
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China;
| |
Collapse
|
4
|
Zheng M, Zhang R, Yang X, Wang F, Guo X, Li L, Wang J, Shi Y, Miao S, Quan W, Ma S, Shi X. Integrating network pharmacology, molecular docking, and bioinformatics to explore the mechanism of sparganii rhizoma in the treatment of laryngeal cancer. Mol Divers 2025:10.1007/s11030-025-11142-5. [PMID: 40009149 DOI: 10.1007/s11030-025-11142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Sparganii Rhizoma (SR) has demonstrated promising anticancer effects across various malignancies; however, its mechanisms in laryngeal cancer (LC) remain poorly understood. This study employs network pharmacology and molecular docking to investigate the molecular mechanisms underlying SR's therapeutic effects on LC, providing novel insights for its potential use in treatment. Active compounds and targets of SR were identified through the TCMSP and Pharmmapper databases, while LC-related targets were sourced from GEO, GeneCards, OMIM, and PharmGkb databases. A Venn diagram generated from these datasets highlighted 58 overlapping targets. The STRING database and Cytoscape 3.9.1 software facilitated the construction of a protein-protein interaction network for these targets, and R language analysis revealed 15 core targets. GO and KEGG enrichment analyses, conducted with the ''clusterProfiler'' package, identified relevant biological processes, cellular components, and molecular functions associated with LC treatment. KEGG analysis suggested SR primarily regulates pathways such as TNF, IL-17, and P53. Molecular docking confirmed SR's ability to bind effectively to the 15 core targets. Molecular dynamics simulations further validated stable protein-ligand interactions for MAPK1, GSK3B, and MAPK14. Core target validation across transcriptional, translational, and immune infiltration levels was performed using GEPIA, HPA, cBioPortal, and TIMER databases. In conclusion, network pharmacology, molecular docking, and dynamics simulations provided insights into SR's mechanism in LC treatment, forming a theoretical basis for further investigation of its therapeutic potential.
Collapse
Affiliation(s)
- Meiling Zheng
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rui Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xinxing Yang
- Ultrasound Department of The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Feiyan Wang
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiaodi Guo
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yajun Shi
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Zhang X, Zou J, Ning J, Zhao Y, Qu R, Zhang Y. Identification of potential diagnostic targets and therapeutic strategies for anoikis-related biomarkers in lung squamous cell carcinoma using machine learning and computational virtual screening. Front Pharmacol 2025; 16:1500968. [PMID: 40028162 PMCID: PMC11868076 DOI: 10.3389/fphar.2025.1500968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Lung squamous cell carcinoma (LUSC) is a common subtype of non-small cell lung cancer (NSCLC) characterized by high invasiveness, high metastatic potential, and drug resistance, resulting in poor patient prognosis. Anoikis, a specific form of apoptosis triggered by cell detachment from the extracellular matrix (ECM), plays a crucial role in tumor metastasis. Resistance to anoikis is a key mechanism by which cancer cells acquire metastatic potential. Although several studies have identified biomarkers related to LUSC, the role of anoikis-related genes (ARGs) remains largely unexplored. Methods Anoikis-related genes were obtained from the Harmonizome and GeneCards databases, and 222 differentially expressed genes (DEGs) in LUSC were identified via differential expression analysis. Univariate Cox regression analysis identified 74 ARGs significantly associated with survival, and a prognostic model comprising 8 ARGs was developed using LASSO and multivariate Cox regression analyses. The model was internally validated using receiver operating characteristic (ROC) curves and Kaplan-Meier (K-M) survival curves. Differences in immune cell infiltration and gene expression between high- and low-risk groups were analyzed. Virtual drug screening and molecular dynamics simulations were performed to evaluate the therapeutic potential of CSNK2A1, a key gene in the model. Finally, in vitro experiments were conducted to validate the therapeutic effects of the identified drug on LUSC. Results The 8-gene prognostic model demonstrated excellent predictive performance and stability. Significant differences in immune cell infiltration and immune microenvironment characteristics were observed between the high- and low-risk groups, suggesting the critical role of ARGs in shaping the immune landscape of LUSC. Virtual drug screening identified Dihydroergotamine as having the highest binding affinity for CSNK2A1. Molecular dynamics simulations confirmed that the CSNK2A1-Dihydroergotamine complex exhibited strong binding stability. Further in vitro experiments demonstrated that Dihydroergotamine significantly inhibited LUSC cell viability, migration, and invasion, and downregulated CSNK2A1 expression. Conclusion This study is the first to construct an anoikis-related prognostic model for LUSC, highlighting its role in the tumor immune microenvironment and providing insights into personalized therapy. Dihydroergotamine exhibited significant anti-LUSC activity and holds promise as a potential therapeutic agent. CSNK2A1 emerged as a robust candidate for early diagnosis and a therapeutic target in LUSC.
Collapse
Affiliation(s)
- Xin Zhang
- College of Basic Medical sciences, Dali University, Dali, China
| | - Jing Zou
- Department of Respiratory Medicine, First Affiliated Hospital of Dali University, Dali, China
| | - Jinghua Ning
- College of Basic Medical sciences, Dali University, Dali, China
| | - Yanhong Zhao
- College of Basic Medical sciences, Dali University, Dali, China
| | - Run Qu
- College of Basic Medical sciences, Dali University, Dali, China
| | - Yuzhe Zhang
- College of Basic Medical sciences, Dali University, Dali, China
- Key Laboratory of Insect Biomedicine, Dali, Yunnan, China
- Key Laboratory of Anti-Pathogen Medicinal Plants Screening, Dali, Yunnan, China
| |
Collapse
|
6
|
Wang X, Wu L, Yu M, Wang H, He L, Hu Y, Li Z, Zheng Y, Peng B. Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations. Mol Divers 2025; 29:591-606. [PMID: 38734868 DOI: 10.1007/s11030-024-10877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Ankylosing spondylitis (AS) is a rheumatic disease that causes inflammation and bone formation in the spine. Despite significant advances in treatment, adverse side effects have triggered research into natural compounds. Epimedium (EP) is a traditional Chinese herb with a variety of pharmacological activities, including antirheumatic, anti-inflammatory, and immunomodulatory activities; however, its direct effects on AS treatment and the underlying molecular mechanisms have not been systematically studied. Thus, here, we used network pharmacology, molecular docking, and molecular dynamics simulations to explore the targets of EP for treating AS. We constructed an interaction network to elucidate the complex relationship between EP and AS. Sixteen active ingredients in EP were screened; 80 potential targets were identified. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone, anhydroicaritin, and luteolin were the core components and TNF, IL-6, IL-1β, MMP9, and PTGS2 were the core targets. The GO and KEGG analyses indicated that EP may modulate multiple biological processes and pathways, including the AGE-RAGE, TNF, NF-κB/MAPK, and TLR signaling pathways, for AS treatment. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of EP, with stable binding within 100 nanoseconds. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone possessed the highest free energy of binding to PTGS2 and TNF (-115.575 and - 87.676 kcal/mol, respectively). Thus, EP may affect AS through multiple pathways, including the alleviation of inflammation, oxidative stress, and immune responses. In summary, we identified the active components and potential targets of EP, highlighting new strategies for the further experimental validation and exploration of lead compounds for treating AS.
Collapse
Affiliation(s)
- Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Lijiao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Maobin Yu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Hao Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Langyu He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yilang Hu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Zhaosen Li
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yuqin Zheng
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Bo Peng
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.
| |
Collapse
|
7
|
Wei Y, Wang Z, Guo X, Lei Y, Deng X, Zhang J. Integrated network pharmacology and experimental validation to explore the mechanisms of Coregonus peled-derived myosin ACE-inhibiting peptides for the treatment of hypertension. Int J Biol Macromol 2025; 284:138218. [PMID: 39617224 DOI: 10.1016/j.ijbiomac.2024.138218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Coregonus peled is rich in protein and is a plentiful resource of bioactive peptides. This study was aimed at extracting novel Angiotensin I-converting enzyme (ACE) inhibitory peptides from Coregonus peled and revealing their potential hypotensive mechanisms. This paper screened six ACE inhibitory peptides with high bioactivity, good water solubility, and ADMET properties by computerized enzyme digestion of myosin-heavy chain from Coregonus peled, and LCYPR had the greatest ACE inhibition activity (IC50 = 47.8782 μM). There were 47 potentially critical targets of LCYPR for hypertension treatment, involving 135 biological processes (BP), 30 cellular components (CC), and 30 molecular functions (MF). The results of KEGG pathway analyse showed that the LCYPR participated in 50 pathways including the renin-angiotensin system, renin secretion, lipid and atherosclerosis, relaxin signaling pathway, IL-17 signaling pathway, atherosclerosis, fluid shear stress, and others, through the key targets such as AGT, AKT1, ACE, REN, CTSB, STAT3, PLG, SRC, MMP2, and F2 to regulate the blood pressure of organisms. In conclusion, the study obtained a novel ACE inhibitory peptide from the myosin-heavy chain of Coregonus peled and revealed the potential target and pathway of LCYPR to improve hypertension. The study provides new ideas and methods for developing novel antihypertensive peptides. The results provide a theoretical basis for developing functional foods of the Xinjiang specialty cold-water fish.
Collapse
Affiliation(s)
- Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhouping Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yongdong Lei
- Food Quality and Testing Center of Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
8
|
Zhang J, Yang F, Tang D, Wang Z, He K, Chen J, Danso B, Wei D, Höfer J, Sun Y, Xiao L, Dong W. Sika Deer antler protein antagonizes the inflammatory response and oxidative damage induced by jellyfish venom. Int Immunopharmacol 2024; 143:113343. [PMID: 39388896 DOI: 10.1016/j.intimp.2024.113343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The investigation into specific treatments for jellyfish stings has consistently presented a significant medical challenge. Sika Deer antler protein (DAP), a valuable component of traditional Chinese medicine (TCM) known for its various pharmacological properties, has been widely utilized for the prevention and treatment of numerous diseases. In this study, proteome analysis and biological activity assays of DAP identified 94 distinct protein components and demonstrated its capability to scavenge free radicals. Moreover, administration of 50 mg/kg DAP notably enhanced survival rates in mice, mitigated increases in hematological indicators and inflammatory markers (IL-6, IL-1β, and TNF-α), and alleviated pathological abnormalities induced by jellyfish venom. Additionally, DAP intervention significantly decreased the hemolysis rate and improved the viability of RAW264.7 cells, while reducing cell apoptosis and oxidative stress. Transcriptome analysis and western blotting of RAW264.7 cells further confirmed that DAP inhibited the activation of the NF-κB and MAPK signaling pathways. Overall, DAP effectively countered the toxicity of jellyfish venom by reducing oxidative damage and inflammatory response, highlighting the potential of TCM in treating jellyfish stings.
Collapse
Affiliation(s)
- Jinyu Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Fengling Yang
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Dahai Tang
- Department of Ultrasound, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zengfa Wang
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Kejin He
- Basic School of Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Jingbo Chen
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Blessing Danso
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Dunbiao Wei
- Hospital of No. 92196 Unit of Chinese Navy, Qingdao 266000, China
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Región de Valparaíso, Chile
| | - Yue Sun
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Weibing Dong
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
9
|
Chen S, Li Y, Yang Y, Zhao S, Shi H, Yang C, Wu M, Zhang A. Comparison of the composition, immunological activity and anti-fatigue effects of different parts in sika deer antler. Front Pharmacol 2024; 15:1468237. [PMID: 39749204 PMCID: PMC11693646 DOI: 10.3389/fphar.2024.1468237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Background Sika deer (Cervus nippon Temminck, 1838) antler is a highly esteemed tonic renowned for its abundant assortment of polypeptides, polysaccharides, amino acids, and minerals, and is recognized for its multifarious pharmacological properties. However, limited research has been conducted regarding the variation in composition of deer antlers between the upper and basal sections, as well as their pharmacological effects on immunological activity and anti-fatigue in mice. The objective of this study was to conduct a comprehensive analysis on the appearance, chemical composition, and pharmacological effects of different components within sika deer antlers. This investigation aims to elucidate the disparities in quality among various parts of antlers and establish a theoretical foundation for the precise utilization of sika deer antlers. Methods The contents of protein, amino acids, polysaccharides, phospholipids, minerals and nucleotides in wax, powder, gauze and bone slices were determined by different nutrient assays. Then, 100 mice were randomly divided into 5 groups. The mice in control group were administered 0.3 mL of saline solution per day. The mice in experimental groups were administered 0.3 mL enzymatic hydrolysate of the wax slice, powder slice, gauze slice, bone slice separately per day, continuously for 14 days from the first day. The effect of antler on boosting immunity was evaluated by testing organ indices and assessing immunoglobulin levels by ELISA. Anti-fatigue effects were assessed by a mouse swimming test. Finally, the correlation between composition and pharmacological effects was analysed. Results The content of each marker substance gradually decreases from the upper to the basal of deer antler. The protein and uracil content in the wax slice were significantly higher than the other three groups (p < 0.05), and the phospholipid and inosine content were strongly significantly higher than the other three groups (p < 0.01). The content of polysaccharides and hypoxanthine in the wax slice group and powder slice group was significantly higher than that in the gauze slice group and bone slice group (p < 0.05). The amino acid content decreases from the upper to the basal section. Among, the content of Glu, Gly, His, and Pro wax slice was significantly higher than the other three groups (p < 0.01). The content of other minerals except Fe and Mg in the wax slice group was significantly higher than the other three groups (p < 0.01), and the content of Fe and Mg in the bone slice was the highest. Additionally, the immune organ index, immunoglobulin, and glycogen contents displayed a significant increase in comparison to both the control group and the other experimental groups (p < 0.05). And the swimming endurance of mice in the wax slice group was significantly prolonged (p < 0.01). The skeletal muscle state of the wax group mice exhibited superior characteristics, characterized by distinct horizontal stripes and tightly arranged muscle fibers. In contrast, the bone group displayed noticeable yet relatively less compact horizontal stripes. Among the organic and inorganic compositions of deer antler, the highest degree of correlation with the content of IgA, IgM, and IgG was found to be protein (r2 = 0.999), uracil (r2 = 0.987), and inosine (r2 = 0.999), respectively. The proteins (r2 = 0.997) appear to exert a significant influence on the anti-fatigue effect, while polysaccharides (r2 = 0.865) demonstrate the least relevance. Conclusion These outcomes indicated that the wax slice yielded optimal results among the tested parts and demonstrated the highest efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aiwu Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Zhao R, Luo J, Kim Chung S, Xu B. Anti-depression molecular mechanism elucidation of the phytochemicals in edible flower of Hemerocallis citrina Baroni. Food Sci Nutr 2024; 12:10164-10180. [PMID: 39723076 PMCID: PMC11666966 DOI: 10.1002/fsn3.4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/17/2024] [Indexed: 12/28/2024] Open
Abstract
The edible flower of Hemerocallis citrina Baroni, commonly known as "Huang Huacai" in China, has anti-depressant effects. However, targets and molecular mechanisms of Hemerocallis citrina Baroni edible flowers (HEF) in depression treatment are still unclear. The potential anti-depression targets in HEF were identified by the intersecting results from typical drug databases. The network construction and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were carried out for core targets. The molecular docking was conducted to predict the binding affinity between the active components and the central targets. The intersecting results indicated that there were 24 active components in HEF, with 449 anti-depression targets identified. After screening through degree centrality (DC), betweenness centrality (BC), and closeness centrality (CC), 166 core targets were determined. Tumor protein 53 (TP53) and interleukin 6 (IL-6) had the highest degree values. The results of GO enrichment analysis associated with anti-depression revealed that the biological processes were negative regulation of osteoclast differentiation and positive regulation of phosphorus metabolic process. KEGG enrichment analysis results revealed that pathways, such as the phosphatidylinositol 3‑kinase-protein kinase B (PI3K-Akt) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway, were primarily associated with anti-depression. Molecular docking results indicated that the top 10 active ingredients in HEF could bind to the central targets. This study applied network pharmacology to unveil the potential anti-depressive mechanisms of HEF, providing a theoretical basis for further exploration of the effective components in H. citrina edible flower parts.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| | - Sookja Kim Chung
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Baojun Xu
- Food Science and Technology Program, Department of Life SciencesBNU‐HKBU United International CollegeZhuhaiGuangdongChina
| |
Collapse
|
11
|
Wang X, Wu L, Luo D, He L, Wang H, Peng B. Mechanism of action of Salvia miltiorrhiza on avascular necrosis of the femoral head determined by integrated network pharmacology and molecular dynamics simulation. Sci Rep 2024; 14:28479. [PMID: 39558045 PMCID: PMC11574184 DOI: 10.1038/s41598-024-79532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a progressive, multifactorial, and challenging clinical condition that often leads to hip dysfunction and deterioration. The pathogenesis of ANFH is complex, and there is no foolproof treatment strategy. Although some pharmacologic and surgical treatments have been shown to improve ANFH, the associated side effects and poor prognosis are of concern. Therefore, there is an urgent need to explore therapeutic interventions with superior efficacy and safety to improve the quality of life of patients with ANFH. Salvia miltiorrhiza (SM), a traditional Chinese medicine with a long history, is widely used for the treatment of cardiovascular and musculoskeletal diseases due to its multiple pharmacological activities. However, the molecular mechanism of SM for the treatment of ANFH is still unclear. Therefore, this study aimed to explore the potential targets and mechanisms of SM for the treatment of ANFH using network pharmacology and molecular modeling techniques. By searching multiple databases, we screened 52 compounds and 42 common targets involved in ANFH therapy and identified dan-shexinkum d, cryptotanshinone, tanshinone iia, and dihydrotanshinlactone as key compounds. Based on the protein-protein interaction (PPI) network, TP53, AKT1, EGFR, STAT3, BCL2, IL6, and TNF were identified as core targets. Subsequent enrichment analysis revealed that these targets were mainly enriched in the AGE-RAGE, IL-17, and TNF pathways, which were mainly associated with inflammatory responses, apoptosis, and oxidative stress. In addition, molecular docking and 100 nanoseconds molecular dynamics (MD) simulations showed that the bioactive compounds of SM had excellent affinity and binding strength to the core targets. Among them, dan-shexinkum d possessed the lowest binding free energy (-215.874 kcal/mol and - 140.277 kcal/mol, respectively) for AKT1 and EGFR. These results demonstrated the multi-component, multi-target, and multi-pathway intervention mechanism of SM in the treatment of ANFH, which provided theoretical basis and clues for further experimental validation and development of anti-ANFH drugs.
Collapse
Affiliation(s)
- Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Lijiao Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Dan Luo
- Basic Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Langyu He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Hao Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Bo Peng
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.
| |
Collapse
|
12
|
Luo C, Zhang Q, Zheng S, Wang D, Huang W, Huang Y, Shi X, Xie H, Wu K. Visual toxicity in zebrafish larvae following exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), triphenyl phosphate (TPhP), and isopropyl phenyl diphenyl phosphate (IPPP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175131. [PMID: 39127212 DOI: 10.1016/j.scitotenv.2024.175131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
13
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
14
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
15
|
Zhang Z, Cheng J, Zhou X, Wu H, Zhang B. Integrated network pharmacology and molecular docking to investigate the potential mechanism of Tufuling on Alzheimer's disease. Heliyon 2024; 10:e36471. [PMID: 39253234 PMCID: PMC11382023 DOI: 10.1016/j.heliyon.2024.e36471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Objective This study aimed to investigate the mechanism of Tu Fu Ling in treating Alzheimer's disease (AD) using network pharmacology and molecular docking. Methods The TCMSP and Swiss target prediction databases were utilized to confirm the active components of Tu Fu Ling and their corresponding targets, with target gene names converted using the UniProt database. Genes related to AD were collected from DisGeNET, GeneCards, and the Open Target Platform databases. Common target genes between the disease and the drug were obtained using Venny 2.1 tools and visualized using Cytoscape software. Protein-protein interaction (PPI) data were further analyzed to determine correlations between common target genes, and GO and KEGG pathway enrichment analyses were performed for intersecting genes. Finally, PYmol, AutoDock Tool, Discovery Studio 2020, and PyRx software were used for preliminary computer virtual verification and visualization of active drug ingredients and target proteins. Results Nine active ingredients meeting the screening criteria yielded a total of 168 genes after removing duplicates. A total of 3833 target genes were collected, with 129 overlapping target genes identified. GO enrichment analysis identified 643 biological processes, 82 cellular components, and 147 molecular functions. KEGG pathway enrichment analysis also revealed a pathway closely related to AD (hsa05010: Alzheimer's disease). In molecular docking analysis, the binding affinity between the 9 active ingredients and 10 core targets ranged from -3.5 to -12.3 kcal/mol, indicating strong binding. Conclusion This study preliminarily verified the combination of Tu Fu Ling's screened active ingredient and the calculated core target, suggesting a potential mechanism of action to improve the symptoms of AD patients through multi-target and multi-pathway approaches. This provides a valuable reference for further exploration of the pharmacological mechanism of AD and the formulation of drug therapy.
Collapse
Affiliation(s)
- Ziyou Zhang
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Jiamao Cheng
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Xinpei Zhou
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Haoyi Wu
- Dali University, College of Basic Medicine, Dali, 671000, China
| | - Bensi Zhang
- Dali University, College of Basic Medicine, Dali, 671000, China
| |
Collapse
|
16
|
Wu Z, Yang L, Wang R, Yang J, Liang P, Ren W, Yu H. Exploring the Mechanism of Asiatic Acid against Atherosclerosis Based on Molecular Docking, Molecular Dynamics, and Experimental Verification. Pharmaceuticals (Basel) 2024; 17:969. [PMID: 39065817 PMCID: PMC11279847 DOI: 10.3390/ph17070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Asiatic acid (AA) is a pentacyclic triterpene derived from the traditional medicine Centella asiatica. It is known for its anti-inflammatory, antioxidant, and lipid-regulating properties. Though previous studies have suggested its potential therapeutic benefits for atherosclerosis, its pharmacological mechanism is unclear. The objective of this study was to investigate the molecular mechanism of AA in the treatment of atherosclerosis. Therefore, network pharmacology was employed to uncover the mechanism by which AA acts as an anti-atherosclerotic agent. Furthermore, molecular docking, molecular dynamics (MD) simulation, and in vitro experiments were performed to elucidate the mechanism of AA's anti-atherosclerotic effects. Molecular docking analysis demonstrated a strong affinity between AA and PPARγ. Further MD simulations demonstrated the favorable stability of AA-PPARγ protein complexes. In vitro experiments demonstrated that AA can dose-dependently inhibit the expression of inflammatory factors induced by lipopolysaccharide (LPS) in RAW264.7 cells. This effect may be mediated through the PPARγ/NF-κB signaling pathway. This research underscores anti-inflammation as a crucial biological process in AA treatments for atherosclerosis, with PPARγ potentially serving as a key target.
Collapse
Affiliation(s)
- Zhihao Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; (L.Y.); (P.L.)
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
| | - Jie Yang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; (L.Y.); (P.L.)
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; (L.Y.); (P.L.)
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (Z.W.); (R.W.)
- Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
17
|
Wang X, Ma J, Dong Y, Ren X, Li R, Yang G, She G, Tan Y, Chen S. Exploration on the potential efficacy and mechanism of methyl salicylate glycosides in the treatment of schizophrenia based on bioinformatics, molecular docking and dynamics simulation. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:64. [PMID: 39019913 PMCID: PMC11255270 DOI: 10.1038/s41537-024-00484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
The etiological and therapeutic complexities of schizophrenia (SCZ) persist, prompting exploration of anti-inflammatory therapy as a potential treatment approach. Methyl salicylate glycosides (MSGs), possessing a structural parent nucleus akin to aspirin, are being investigated for their therapeutic potential in schizophrenia. Utilizing bioinformation mining, network pharmacology, molecular docking and dynamics simulation, the potential value and mechanism of MSGs (including MSTG-A, MSTG-B, and Gaultherin) in the treatment of SCZ, as well as the underlying pathogenesis of the disorder, were examined. 581 differentially expressed genes related to SCZ were identified in patients and healthy individuals, with 349 up-regulated genes and 232 down-regulated genes. 29 core targets were characterized by protein-protein interaction (PPI) network, with the top 10 core targets being BDNF, VEGFA, PVALB, KCNA1, GRIN2A, ATP2B2, KCNA2, APOE, PPARGC1A and SCN1A. The pathogenesis of SCZ primarily involves cAMP signaling, neurodegenerative diseases and other pathways, as well as regulation of ion transmembrane transport. Molecular docking analysis revealed that the three candidates exhibited binding activity with certain targets with binding affinities ranging from -4.7 to -109.2 kcal/mol. MSTG-A, MSTG-B and Gaultherin show promise for use in the treatment of SCZ, potentially through their ability to modulate the expression of multiple genes involved in synaptic structure and function, ion transport, energy metabolism. Molecular dynamics simulation revealed good binding abilities between MSTG-A, MSTG-B, Gaultherin and ATP2B2. It suggests new avenues for further investigation in this area.
Collapse
Affiliation(s)
- Xiuhuan Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Ruoming Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | - Guigang Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| |
Collapse
|
18
|
Zhang MY, Zheng SQ. Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease. World J Diabetes 2024; 15:1562-1588. [PMID: 39099827 PMCID: PMC11292324 DOI: 10.4239/wjd.v15.i7.1562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. The Astragalus-Coptis drug pair is frequently employed in the management of DKD. However, the precise molecular mechanism underlying its therapeutic effect remains elusive. AIM To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways. METHODS The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform. The targets were predicted using the SwissTargetPrediction database, while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database. DKD targets were acquired from the GeneCards, Online Mendelian Inheritance in Man database, and DisGeNET databases, with common targets identified through the Venny platform. The protein-protein interaction network and the "disease-active ingredient-target" network of the common targets were constructed utilizing the STRING database and Cytoscape software, followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients. Gene Ontology (GO) function and Kyoto Ency-clopedia of Genes and Genomes (KEGG) pathway enrichments were performed using the DAVID database. The tissue and organ distributions of key targets were evaluated. PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets. Finally, molecular dynamics (MD) simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins. RESULTS A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified. There were 273 common targets between DKD and the Astragalus-Coptis drug pair. Through protein-protein interaction network topology analysis, we identified 9 core active ingredients and 10 key targets. GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes, including protein phosphorylation, negative regulation of apoptosis, inflammatory response, and endoplasmic reticulum unfolded protein response. These pathways are mainly associated with the advanced glycation end products (AGE)-receptor for AGE products signaling pathway in diabetic complications, as well as the Lipid and atherosclerosis. Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets. Notably, the quercetin-AKT serine/threonine kinase 1 (AKT1) and quercetin-tumor necrosis factor (TNF) protein complexes exhibited exceptional stability. CONCLUSION This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients, targets, and signaling pathways. We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD. Furthermore, we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF, providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment.
Collapse
Affiliation(s)
- Mo-Yan Zhang
- Liaoning University of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, Liaoning Province, China
| | - Shu-Qin Zheng
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
19
|
Cheng W, Zhang BF, Chen N, Liu Q, Ma X, Fu X, Xu M. Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. Cell Biochem Biophys 2024; 82:1433-1451. [PMID: 38753250 DOI: 10.1007/s12013-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 08/25/2024]
Abstract
Chronic heart failure (CHF) is a complex multifactorial clinical syndrome leading to abnormal cardiac structure and function. The severe form of this ailment is characterized by high disability, high mortality, and morbidity. Worldwide, 2-17% of patients die at first admission, of which 17-45% die within 1 year of admission and >50% within 5 years. Yangshen Maidong Decoction (YSMDD) is frequently used to treat the deficiency and pain of the heart. The specific mechanism of action of YSMDD in treating CHF, however, remains unclear. Therefore, a network pharmacology-based strategy combined with molecular docking and molecular dynamics simulations was employed to investigate the potential molecular mechanism of YSMDD against CHF. The effective components and their targets of YSMDD and related targets of CHF were predicted and screened based on the public database. The network pharmacology was used to explore the potential targets and possible pathways that involved in YSMDD treated CHF. Molecular docking and molecular dynamics simulations were performed to elucidate the binding affinity between the YSMDD and CHF targets. Screen results, 10 main active ingredients, and 6 key targets were acquired through network pharmacology analysis. Pathway enrichment analysis showed that intersectional targets associated pathways were enriched in the Prostate cancer pathway, Hepatitis B pathway, and C-type lectin receptor signaling pathways. Molecular docking and molecular dynamics simulations analysis suggested 5 critical active ingredients have high binding affinity to the 5 key targets. This research shows the multiple active components and molecular mechanisms of YSMDD in the treatment of CHF and offers resources and suggestions for future studies.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Bo-Feng Zhang
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Na Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qun Liu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xin Ma
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xiao Fu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Min Xu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China.
| |
Collapse
|
20
|
Liu Y, Luo J, Xu B. Elucidation of Anti-Obesity Mechanisms of Phenolics in Artemisiae argyi Folium (Aiye) by Integrating LC-MS, Network Pharmacology, and Molecular Docking. Life (Basel) 2024; 14:656. [PMID: 38929640 PMCID: PMC11205026 DOI: 10.3390/life14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The global prevalence of obesity is a pressing health issue, increasing the medical burden and posing significant health risks to humans. The side effects and complications associated with conventional medication and surgery have spurred the search for anti-obesity drugs from plant resources. Previous studies have suggested that Artemisiae argyi Folium (Aiye) water extracts could inhibit pancreatic lipase activities, control body weight increase, and improve the plasma lipids profile. However, the exact components and mechanisms were not precisely understood. Therefore, this research aims to identify the chemical profile of Aiye and provide a comprehensive prediction of its anti-obesity mechanisms. The water extract of Aiye was subjected to LC-MS analysis, which identified 30 phenolics. The anti-obesity mechanisms of these phenolics were then predicted, employing network pharmacology and molecular docking. Among the 30 phenolics, 21 passed the drug-likeness screening and exhibited 486 anti-obesity targets. The enrichment analysis revealed that these phenolics may combat obesity through PI3K-Akt signaling and MAPK, prolactin, and cAMP signaling pathways. Eight phenolics and seven central targets were selected for molecular docking, and 45 out of 56 docking had a binding affinity of less than -5 kcal/mol. This research has indicated the potential therapy targets and signaling pathways of Aiye in combating obesity.
Collapse
Affiliation(s)
- Yongxiang Liu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (Y.L.); (J.L.)
| |
Collapse
|
21
|
Gu H, Zhong L, Zhang Y, Sun J, Liu L, Liu Z. Exploring the mechanism of Jinlida granules against type 2 diabetes mellitus by an integrative pharmacology strategy. Sci Rep 2024; 14:10286. [PMID: 38704482 PMCID: PMC11069553 DOI: 10.1038/s41598-024-61011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Jinlida granule (JLD) is a Traditional Chinese Medicine (TCM) formula used for the treatment of type 2 diabetes mellitus (T2DM). However, the mechanism of JLD treatment for T2DM is not fully revealed. In this study, we explored the mechanism of JLD against T2DM by an integrative pharmacology strategy. Active components and corresponding targets were retrieved from Traditional Chinese Medicine System Pharmacology (TCMSP), SwissADME and Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine Database (BATMAN-TCM) database. T2DM-related targets were obtained from Drugbank and Genecards databases. The protein-protein interaction (PPI) network was constructed and analyzed with STRING (Search Toll for the Retrieval of Interacting Genes/proteins) and Cytoscape to get the key targets. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID). Lastly, the binding capacities and reliability between potential active components and the targets were verified with molecular docking and molecular dynamics simulation. In total, 185 active components and 337 targets of JLD were obtained. 317 targets overlapped with T2DM-related targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), prostaglandin G/H synthase 2 (PTGS2), Caspase-3 (CASP3) and signal transducer and activator of transcription 3 (STAT3) were identified as seven key targets by the topological analysis of the PPI network. GO and KEGG enrichment analyses showed that the effects were primarily associated with gene expression, signal transduction, apoptosis and inflammation. The pathways were mainly enriched in PI3K-AKT signaling pathway and AGE-RAGE signaling pathway in diabetic complications. Molecular docking and molecular dynamics simulation verified the good binding affinity between the key components and targets. The predicted results may provide a theoretical basis for drug screening of JLD and a new insight for the therapeutic effect of JLD on T2DM.
Collapse
Affiliation(s)
- Haiyan Gu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
| | - Liang Zhong
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
| | - Yuxin Zhang
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
| | - Jinghua Sun
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
| | - Lipeng Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China
| | - Zanchao Liu
- Department of Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China.
- Department of Shijiazhuang Technology Innovation Center of Precision Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, 050000, China.
| |
Collapse
|
22
|
Rossetti A, Chonco L, Alegría N, Zelli V, García AJ, Ramírez-Castillejo C, Tessitore A, de Cabo C, Landete-Castillejos T, Festuccia C. General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma. Pharmaceutics 2024; 16:610. [PMID: 38794272 PMCID: PMC11125008 DOI: 10.3390/pharmaceutics16050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects.
Collapse
Affiliation(s)
- Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Louis Chonco
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Nicolas Alegría
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Cancer Stem Cell Research Group, Department of Biotechnology-Vegetal Biology, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Andrés J. García
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- Cancer Stem Cell Research Group, Department of Biotechnology-Vegetal Biology, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| | - Carlos de Cabo
- Research Department, Neuropsychopharmacology Unit, Complejo Hospitalario Universitario de Albacete (CHUA), 02071 Albacete, Spain;
| | - Tomás Landete-Castillejos
- Instituto de Desarrollo Regional (IDR), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain; (L.C.); (N.A.); (A.J.G.)
- Instituto de Investigación en Recursos Cinegéticos (IREC; UCLM-CSIC-JCCM), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología (ETSIAMB), University of Castilla-La Mancha (UCLM), 02071 Albacete, Spain
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.R.); (V.Z.); (A.T.); (C.F.)
| |
Collapse
|
23
|
Karamifard F, Mazaheri M, Dadbinpour A. Abatement of the binding of human hexokinase II enzyme monomers by in-silico method with the design of inhibitory peptides. In Silico Pharmacol 2024; 12:30. [PMID: 38617709 PMCID: PMC11009198 DOI: 10.1007/s40203-024-00201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
The hexokinase II enzyme is bound to the (VDAC1) channel in the form of a dimer and prevents the release of cell death factors from mitochondria to the cytoplasm. Studies have shown that blocking the binding of hexokinase II enzyme to (VDAC1) led to the initiation of apoptosis in cancer cells. No peptide has been designed so far to inhibit hexokinase II. The aim of this study was to inhibit the dimerization of enzyme subunits in order to inhibition the formation of (VDAC1) and the hexokinase II complex. In this study, the molecular dynamics simulation of the enzyme in monomer and dimer states was investigated in terms of RMSF, RMSD and radius of gyration. The following process involves extracting and designing variable-length peptides from the interacting segments of enzyme monomers. Using molecular dynamics simulation, the stability of the peptide was determined in terms of RMSD. Molecular docking was used to investigate the interaction between the designed peptides. Finally, the inhibitory effect of peptides on subunit association was measured using dynamic light scattering (DLS) technique. Our results showed that the designed peptides, which mimic common amino acids in dimerization, interrupt the bona fide form of the enzyme subunits. The result of this study provides a new way to disrupt the assembly process and thereby decreased the function of the hexokinase II. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00201-8.
Collapse
Affiliation(s)
- Faranak Karamifard
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences of Yazd, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Mother and Newborn, Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Dadbinpour
- Genetic and Environmental Adventures, Department of Genetics, Medical School, School of Abarkouh Paramedicin, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| |
Collapse
|
24
|
Mohanty D, Padhee S, Priyadarshini A, Champati BB, Das PK, Jena S, Sahoo A, Chandra Panda P, Nayak S, Ray A. Elucidating the anti-cancer potential of Cinnamomum tamala essential oil against non-small cell lung cancer: A multifaceted approach involving GC-MS profiling, network pharmacology, and molecular dynamics simulations. Heliyon 2024; 10:e28026. [PMID: 38533033 PMCID: PMC10963383 DOI: 10.1016/j.heliyon.2024.e28026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., or Indian Bay Leaf, is a well-known traditional ayurvedic medicine used to treat various ailments. However, the molecular mechanism of action of Cinnamomum tamala essential oil (CTEO) against non-small cell lung cancer (NSCLC) remains elusive. The present study aims to decipher the molecular targets and mechanism of CTEO in treating NSCLC. GC-MS analysis detected 49 constituents; 44 successfully passed the drug-likeness screening and were identified as active compounds. A total of 3961 CTEO targets and 4588 anti-NSCLC-related targets were acquired. JUN, P53, IL6, MAPK3, HIF1A, and CASP3 were determined as hub genes, while cinnamaldehyde, ethyl cinnamate and acetophenone were identified as core compounds. Enrichment analysis revealed that targets were mainly involved in apoptosis, TNF, IL17, pathways in cancer and MAPK signalling pathways. mRNA expression, pathological stage, survival analysis, immune infiltrate correlation and genetic alteration analysis of the core hub genes were carried out. Kaplan-Meier overall survival (OS) curve revealed that HIF1A and CASP3 are linked to worse overall survival in Lung Adenocarcinoma (LUAD) cancer patients compared to normal patients. Ethyl cinnamate and cinnamaldehyde showed high binding energy with the MAPK3 and formed stable interactions with MAPK3 during the molecular dynamic simulations for 100 ns. The MM/PBSA analysis revealed that van der Waals (VdW) contributions predominantly account for a significant portion of the compound interactions within the binding pocket of MAPK3. Density functional theory analysis showed cinnamaldehyde as the most reactive and least stable compound. CTEO exhibited selective cytotoxicity by inhibiting the proliferation of A549 cells while sparing normal HEK293 cells. CTEO triggered apoptosis by arresting the cell cycle, increasing ROS accumulation, causing mitochondrial depolarisation, and elevating caspase-3, caspase-8 and caspase-9 levels in A549 cells. The above study provides insights into the pharmacological mechanisms of action of Cinnamomum tamala essential oil against non-small cell lung cancer treatment, suggesting its potential as an adjuvant therapy.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Arpita Priyadarshini
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Prabhat Kumar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Asit Ray
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| |
Collapse
|
25
|
Dawuti A, Ma L, An X, Guan J, Zhou C, He L, Xu Y, Han B, Abulizi A. Exploring the effect and mechanism of Aloin A against cancer cachexia-induced muscle atrophy via network pharmacology, molecular docking, molecular dynamics and experimental validation. Aging (Albany NY) 2023; 15:15557-15577. [PMID: 38180061 PMCID: PMC10781478 DOI: 10.18632/aging.205416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
80% of advanced cancer patients suffer from cachexia, but there are no FDA-approved drugs. Therefore, it is imperative to discover potential drugs. OBJECTIVE This study aims at exploring the effect and targets of Aloin A against cancer cachexia (CC)-induced muscle atrophy. METHODS Network pharmacology, molecular docking, molecular dynamics (MD) and animal model of CC-induced muscle atrophy with a series of behavior tests, muscle quality, HE staining and RT-PCR were performed to investigate the anticachectic effects and targets of Aloin A and its molecular mechanism. RESULTS Based on network pharmacology, 51 potential targets of Aloin A on CC-induced muscle atrophy were found, and then 10 hub genes were predicted by the PPI network. Next, KEGG and GO enrichment analysis showed that the anticachectic effect of Aloin A is associated with PI3K-AKT, MAPK, TNF, TLR, etc., pathways, and biological processes like inflammation, apoptosis and cell proliferation. Molecular docking and MD results showed good binding ability between the Aloin A and key targets. Moreover, experiments in vivo demonstrated that Aloin A effectively rescued muscle function and wasting by improving muscle quality, mean CSA, and distribution of muscle fibers by regulating HSP90AA1/AKT signaling in tumor-bearing mice. CONCLUSION This study offers new insights for researchers to understand the effect and mechanism of Aloin A against CC using network pharmacology, molecular docking, MD and experimental validation, and Aloin A retards CC-induced muscle wasting through multiple targets and pathways, including HSP90AA1/AKT signaling, which provides evidence for Aloin A as a potential therapy for cancer cachexia in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lisha Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xueyan An
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Changdong Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Linyun He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
26
|
Chen R, Song C, Qiu J, Su Q, Wang X, Deng G, Cheng K, Chen X, Xiang W, Liu T, Chen X, Wu J. Exploring the potential mechanism of Taohong Siwu decoction in the treatment of avascular necrosis of the femoral head based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e35312. [PMID: 38115279 PMCID: PMC10727545 DOI: 10.1097/md.0000000000035312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 12/21/2023] Open
Abstract
Based on network pharmacology and molecular docking, this study seeks to investigate the mechanism of Taohong Siwu decoction (THSWD) in the treatment of avascular necrosis of the femoral head (AVNFH). The Traditional Chinese Medicine Systems Pharmacology database was used in this investigation to obtain the active ingredients and related targets for each pharmaceutical constituent in THSWD. To find disease-related targets, the terms "avascular necrosis of the femoral head," "necrosis of the femoral head," "steroid-induced necrosis of the femoral head," "osteonecrosis," and "avascular necrosis of the bone" were searched in the databases DisGeNET, GeneCards, Comparative Toxicogenomics Database, and MalaCards. Following the identification of the overlap targets of THSWD and AVNFH, enrichment analysis using gene ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, and WikiPathways was conducted. The "THSWD-drug-active compound-intersection gene-hub gene-AVNFH" network and protein-protein interaction network were built using Cytoscape 3.9.1 and string, and CytoHubba was used to screen hub genes. The binding activities of hub gene targets and key components were confirmed by molecular docking. 152 prospective therapeutic gene targets were found in the bioinformatics study of ONFH treated with THSWD, including 38 major gene targets and 10 hub gene targets. The enrichment analysis of 38 key therapeutic targets showed that the biological process of gene ontology analysis mainly involved cytokine-mediated signaling pathway, angiogenesis, cellular response to reactive oxygen species, death-inducing signaling complex. The Kyoto Encyclopedia of Genes and Genomes signaling pathway mainly involves TNF signaling pathway, IL-17 signaling pathway, and the Recactome pathway mainly involves Signaling by Interleukins, Apoptosis, and Intrinsic Pathway for Apoptosis. WikiPathways signaling pathway mainly involves TNF-related weak inducer of apoptosis signaling pathway, IL-18 signaling pathway. According to the findings of enrichment analysis, THSWD cured AVNFH by regulating angiogenesis, cellular hypoxia, inflammation, senescence, apoptosis, cytokines, and cellular proliferation through the aforementioned targets and signaling pathways. The primary component of THSWD exhibits a strong binding force with the key protein of AVNFH. This study sheds new light on the biological mechanism of THSWD in treating AVNFH by revealing the multi-component, multi-target, and multi-pathway features and molecular docking mechanism of THSWD.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Junjie Qiu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qifan Su
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoqiang Wang
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Guanghui Deng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoyu Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wei Xiang
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaojun Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiaqi Wu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|