2
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin SS, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Early Injury Landscape in Vein Harvest by Single-Cell and Spatial Transcriptomics. Circ Res 2024; 135:110-134. [PMID: 38808504 PMCID: PMC11189745 DOI: 10.1161/circresaha.123.323939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Center for Vascular Biology Research and the Division of Nephrology (C.F.), Harvard Medical School, Boston, MA
| | - Swati S. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center (L.M., J.T., M.C., C.F., L.P.-N., F.W.L., P.L.), Harvard Medical School, Boston, MA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA (M.E.M., M.B., B.E.T., S.S.B., M.K.B.)
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, GA (S.S.B., M.K.B.)
- Department of Biomedical Engineering, Emory University, Atlanta, GA (W.P., M.K.B.)
| |
Collapse
|
4
|
Michaud ME, Mota L, Bakhtiari M, Thomas BE, Tomeo J, Pilcher W, Contreras M, Ferran C, Bhasin S, Pradhan-Nabzdyk L, LoGerfo FW, Liang P, Bhasin MK. Integrated single-nuclei and spatial transcriptomic analysis reveals propagation of early acute vein harvest and distension injury signaling pathways following arterial implantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.564995. [PMID: 37961724 PMCID: PMC10635041 DOI: 10.1101/2023.10.31.564995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Methods Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Results Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P < 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P < 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN (versican), FBN1 (fibrillin-1), and VEGFC (vascular endothelial growth factor C), in addition to novel genes of interest such as GLIS3 (GLIS family zinc finger 3) and EPHA3 (ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. Conclusions Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.
Collapse
Affiliation(s)
- Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Lucas Mota
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Beena E. Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - John Tomeo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - William Pilcher
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mauricio Contreras
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christiane Ferran
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Vascular Biology Research and the Division of Nephrology Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Swati Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
| | - Leena Pradhan-Nabzdyk
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Frank W. LoGerfo
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patric Liang
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Salimi H, Haghighi AH, Ababzadeh S, Marefati H, Abbasian S, Pond AL, Gentil P. Aerobic training and vitamin E administration ameliorates cardiac apoptosis markers in rats exposed to methamphetamine. Eur J Transl Myol 2023; 33:12112. [PMID: 38112583 PMCID: PMC10811645 DOI: 10.4081/ejtm.2023.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Methamphetamine (MA) abuse is related to risks to the cardiovascular system. The present study aimed to compare the effects of moderate-intensity aerobic training (MIAT) and vitamin E (Vit.E) supplementation on markers of cardiac apoptosis following MA exposure. Fifty-four rats were randomly divided into six groups. CON group did not receive MA, while the others received MA alone or in combination with MIAT, Vit. E, MIAT+Vit E, or paraffin (PAR). These groups received MA incrementally for 23 consecutive days. Vit.E and MIAT+Vit.E groups received vitamin E three times a week for six weeks. MIAT and MIAT+Vit.E groups exercised for 25-40 min. Immunohistochemical and gene expression analyses were performed on the heart tissues. Bax and TGF-β expression was significantly higher, while Bcl-2 and VEGF expression was significantly lower in the MA and PAR groups than in the other groups (p < 0.05). Bcl-2 and VEGF expression was higher, and Bax and TGF-β expression was significantly lower in the MIAT and MIAT+Vit.E groups than in the other groups (p < 0.05). In Vit.E treated groups, Bax and TGF-β expression were lower, and VEGF was higher than that in the MA and PAR groups, but higher than those in the CON, MIAT and MIAT+Vit.E groups. MA increased the expression of Bax and TGF-β, and decreased the expression of Bcl-2 and VEGF, suggesting increased cardiac apoptosis. In contrast, MIAT and Vit.E decreased the expression of Bax and TGF-β, suggesting a reduction in cardiac apoptosis induced by MA.
Collapse
Affiliation(s)
- Hamidreza Salimi
- Department of Exercise Physiology, Faculty of Sports Sciences, Hakim Sabzevari University, Sabzevar.
| | - Amir Hossein Haghighi
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar.
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Medical Sciences, Qom University of Medical Sciences, Qom.
| | - Hamid Marefati
- Department of Exercise Physiology, Faculty of Sports Sciences, Hakim Sabzevari University, Sabzevar.
| | - Sadegh Abbasian
- Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad.
| | - Amber L Pond
- Anatomy, Southern Illinois University School of Medicine, Carbondale, IL.
| | - Paulo Gentil
- Hypertension League, Federal University of Goias, Brazil; College of Physical Education and Dance, Federal University of Goias.
| |
Collapse
|