1
|
Abdullah HA, Moawed FSM, Ahmed ESA, Abdel Hamid FF, Haroun RAH. Rutin attenuates iron overload induced-ferroptosis in rats' heart tissue. Nat Prod Res 2025:1-11. [PMID: 40257385 DOI: 10.1080/14786419.2025.2494645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Rutin is a natural flavonoid with antioxidant and iron chelating properties. Therefore, this study aimed to investigate the ameliorative effects of rutin against iron-overload and ionising radiation induced (IR)-ferroptosis in rats' heart tissue. Rats were divided into nine groups; control, Rutin, IR, Fe, Fe + IR, Fe + Rutin, IR+Rutin, Fe + IR+Rutin and Fe + IR+Deferasirox. Serum iron profiles total iron, TIBC, ferritin, transferrin, and hepicidin were determined. Moreover, MDA, GSH, and NO levels and GPx, and SOD activities were also determined. Levels of gene expression of GPX4, Nrf2, DMT1, ACSL4, and caspase3 genes were evaluated by using RT-qPCR. Finally, histopathological examination of rat heart tissues of different groups was done. After rutin treatment, our results revealed that TIBC, ferritin, transferrin, hepicidin, MDA&NO were significantly decreased, while GSH level and GPx&SOD activities were significantly increased. Also, rutin exerting its protective role by increasing GPX4&Nrf2 expressions and decreasing DMTN, ACSL4, and caspase3 expressions. Rutin can be proposed as a therapeutic candidate to attenuate ferroptosis.
Collapse
Affiliation(s)
- Haidy A Abdullah
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
2
|
Tang Y, Leng J, Luo Y, Luo F. Focusing on ferroptosis in alveolar bone loss during periodontitis: From mechanisms to therapies. Int Immunopharmacol 2025; 156:114683. [PMID: 40252463 DOI: 10.1016/j.intimp.2025.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Periodontitis is an oral immunoinflammatory disease induced by bacterial infection. During periodontitis, the aggravating destruction of the alveolar bone can result in tooth movement and even tooth loss. Current conventional treatments for periodontitis primarily focus on infection control, but their effectiveness in halting and restoring alveolar bone destruction is limited. To identify additional therapeutic targets, researchers have been dedicated to investigating other pathological mechanisms underlying alveolar bone loss during periodontitis. Recently, findings indicate that ferroptosis plays a role in the development of periodontitis. Ferroptosis is a nonapoptotic type of cell death marked by iron accumulation and lipid peroxidation. Recent investigations have revealed the complex interplay of ferroptosis and inflammation. The positive feedback loop between ferroptosis and inflammation may significantly contribute to the exacerbation of alveolar bone loss. In light of the advancements in research within this field in recent years, this review intends to thoroughly summarize the processes by which ferroptosis aggravates alveolar bone loss during periodontitis, along with relevant ferroptosis-targeted therapeutic agents. By highlighting the latest advancements in this area, we hope this review will inspire researchers to develop novel therapeutic strategies for more effective inflammation control and regeneration of alveolar bone.
Collapse
Affiliation(s)
- Yuting Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyan Leng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of General Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Birjandi AA, Sharpe P. Therapeutic potential of curcumin in regenerative dentistry. FRONTIERS IN DENTAL MEDICINE 2025; 6:1537478. [PMID: 40196309 PMCID: PMC11973315 DOI: 10.3389/fdmed.2025.1537478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Natural compounds have emerged as promising candidates in drug development due to their potent immunomodulatory anti-inflammatory, antibacterial, analgesic, and healing properties. They have shown significant therapeutic potential in clinical applications, such as mouth rinses, toothpastes, and localized delivery systems. The use of natural alternatives can contribute to tackling antimicrobial resistance. Among natural compounds, curcumin has gained particular attention, demonstrating robust anti-cancer, antibiotic, and anti-inflammatory activities in numerous in vivo studies, while exhibiting a favorable safety profile for the treatment of various diseases. In this study, the remedial effects of curcumin and its metabolite, tetrahydrocurcumin, on dental pulp were explored. In addition, these results were compared with our previous findings on the effects of these natural compounds on periodontal ligament and gingival epithelial cells, further broadening our understanding of their therapeutic potential in oral disease such as caries and periodontitis. Methods RNA sequencing was used to investigate the differentially expressed genes in dental pulp cells following treatments with curcumin and tetrahydrocurcumin. Results We show that treatment of dental pulp cells with 1 μM of curcumin or tetrahydrocurcumin is sufficient to promote Wnt signaling pathway in dental pulp cells. Curcumin treatment promotes the upregulation of cellular metabolism and enhances cellular response to stress. Our enrichment analysis shows that treatment with tetrahydrocurcumin modulates the extracellular matrix and angiogenesis. Conclusions The findings of this study highlight the cytoprotective and regenerative properties of curcumin and tetrahydrocurcumin. These properties could be leveraged as a therapeutic approach to promote tissue regeneration in oral diseases.
Collapse
Affiliation(s)
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, London, United Kingdom
| |
Collapse
|
4
|
Du F, Wang G, Dai Q, Huang J, Li J, Liu C, Du K, Tian H, Deng Q, Xie L, Zhao X, Zhang Q, Yang L, Li Y, Wu Z, Zhang Z. Targeting novel regulated cell death: disulfidptosis in cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2025; 13:35. [PMID: 40012016 DOI: 10.1186/s40364-025-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The battle against cancer has evolved over centuries, from the early stages of surgical resection to contemporary treatments including chemotherapy, radiation, targeted therapies, and immunotherapies. Despite significant advances in cancer treatment over recent decades, these therapies remain limited by various challenges. Immune checkpoint inhibitors (ICIs), a cornerstone of tumor immunotherapy, have emerged as one of the most promising advancements in cancer treatment. Although ICIs, such as CTLA-4 and PD-1/PD-L1 inhibitors, have demonstrated clinical efficacy, their therapeutic impact remains suboptimal due to patient-specific variability and tumor immune resistance. Cell death is a fundamental process for maintaining tissue homeostasis and function. Recent research highlights that the combination of induced regulatory cell death (RCD) and ICIs can substantially enhance anti-tumor responses across multiple cancer types. In cells exhibiting high levels of recombinant solute carrier family 7 member 11 (SLC7A11) protein, glucose deprivation triggers a programmed cell death (PCD) pathway characterized by disulfide bond formation and REDOX (reduction-oxidation) reactions, termed "disulfidptosis." Studies suggest that disulfidptosis plays a critical role in the therapeutic efficacy of SLC7A11high cancers. Therefore, to investigate the potential synergy between disulfidptosis and ICIs, this study will explore the mechanisms of both processes in tumor progression, with the goal of enhancing the anti-tumor immune response of ICIs by targeting the intracellular disulfidptosis pathway.
Collapse
Affiliation(s)
- Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Guojun Wang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qian Dai
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Jiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junxin Li
- Department of pharmacy, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Congxing Liu
- Department of Pharmacy, Chengfei Hospital, Chengdu, 610000, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People's Hospital, Luzhou, 646000, Sichuan, China
| | - Hua Tian
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qiwei Deng
- Heruida Pharmaceutical Co.,ltd, Haikou, Hainan, 570100, China
| | - Longxiang Xie
- The TCM Hospital of Longquanyi District, Chengdu, 610100, Sichuan, China
| | - Xin Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qimin Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Lan Yang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Xin Y, Wang Y. Programmed Cell Death Tunes Periodontitis. Oral Dis 2025. [PMID: 39846400 DOI: 10.1111/odi.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/25/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
OBJECTIVE To review current knowledge of the various processes of programmed cell death and their roles in immunoregulation in periodontitis. METHODS Relevant literature in the PubMed, Medline, and Scopus databases was searched, and a narrative review was performed. Programmed cell death and the regulation of its various pathways implicated in periodontal infection were reviewed. RESULTS Multicellular organisms dispose of unnecessary or damaged cells via programmed cell death. Programmed cell death lies at the core of the balance of cell death and survival in pathological progress and infection. Periodontitis is a complex infectious disease involving virulence factors of periodontal pathogens and tightly regulated immune responses of the host. Different types of programmed cell death can play opposite roles in periodontitis or exert their action combinatorially. CONCLUSION The coordinated system of various programmed cell death pathways and the extensive crosstalk among them play a fundamental role in the pathophysiology of periodontitis. Illuminating the precise roles and mechanisms of programmed cell death in periodontitis could open up novel therapeutic approaches.
Collapse
Affiliation(s)
- Yuejiao Xin
- Department of Periodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
6
|
Wang Y, Li W, Mu W, Seyam A, Guan Y, Tang Y, Wang M, Xin Y, Guo X, Hou T, Guan X. Identification of JNK-JUN-NCOA axis as a therapeutic target for macrophage ferroptosis in chronic apical periodontitis. Int J Med Sci 2025; 22:53-70. [PMID: 39744165 PMCID: PMC11659826 DOI: 10.7150/ijms.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 02/01/2025] Open
Abstract
Objectives: This study aimed to investigate the involvement of macrophage ferroptosis in chronic apical periodontitis (CAP) and determine if blocking JNK/JUN/NCOA4 axis could alleviate CAP by regulating macrophage ferroptosis. Materials and Methods: Firstly, the in vitro models of apical periodontitis (AP) and in vivo models of CAP, including clinical specimens and rats' periapical lesions, were utilized to investigate the role of macrophage ferroptosis in CAP by detecting the ferroptosis related factors. The activation of the JNK/JUN/NCOA4 axis was observed in CAP in vivo models. Pearson's correlation and linear tendency tests were employed to analyze the correlation between the JNK/JUN/NCOA4 axis and macrophage ferroptosis during CAP progression. Subsequently, the JNK/JUN/NCOA4 axis was blocked by SP600125, and the alterations in ferroptosis associated variables and inflammation levels in macrophages were evaluated. Results: The in vitro AP model demonstrated that macrophage ferroptosis mainly occurred during the late phase of inflammatory conditions, with the reduction of GPX4, SLC7A11 and the increase of TFR1 in macrophages. Additionally, a higher accumulation of iron was observed in the periapical lesions derived from clinic samples and animal model. Furthermore, we found that differences in macrophage ferroptosis levels within periapical lesions corresponded altered activation of JNK/JUN/NCOA4 axis. Significantly, the inhibition of JNK/JUN/NCOA4 axis reduced the aforementioned changes and inflammation levels induced by E. coli LPS in macrophages. Conclusions: The occurrence of ferroptosis in macrophages contributes to the development of CAP. Targeting the JNK/JUN/NCOA4 axis is an effective therapeutic strategy to rescue the periapical lesions from inflammation due to its anti-macrophage ferroptosis function. Consequently, the current study provides support for further investigation on the JNK/JUN/NCOA4 axis as a targeted signaling pathway for CAP treatment.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Abdelrahman Seyam
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Guan
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yifei Tang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mingfei Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Xin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaomei Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Liu F, Zhu Z, Zou H, Huang Z, Xiao S, Li Z. Novel Insights from Comprehensive Bioinformatics Analysis Utilizing Large-Scale Human Transcriptomes and Experimental Validation: The Role of Autophagy in Periodontitis. J Inflamm Res 2024; 17:11861-11880. [PMID: 39758938 PMCID: PMC11697667 DOI: 10.2147/jir.s492048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Objective Autophagy plays a crucial role in the pathophysiology of periodontitis, yet its precise involvement in the disease process remains elusive. The aim of the present study was thus to investigate the involvement of autophagy in the pathology of periodontitis. This investigation involved transcriptomic analysis of a broad range of human samples and complemented by in vitro experimentation. Materials and Methods We analyzed the transcriptomes of human gingival tissues from individuals with periodontitis and health controls to identify the differential expression of autophagy-related genes (DEARGs) and to investigate their potential interactions and functional pathways. Additionally, protein-protein interaction (PPI) networks were constructed to identify key functional modules and hub genes. Experimental validation of autophagy regulation in periodontitis and identification of key autophagy-regulating genes was accomplished through in vitro cellular experiments. Subsequently, a comprehensive analysis of immune cell infiltrate utilizing the CIBERSORT algorithm was performed. Finally, leveraging the DSigDB database, potential candidate drugs for periodontitis treatment targeting autophagy were predicted. Results A total of 79 genes have been identified as DEARGs in periodontitis. An intricate interplay among the DEARGs and their impact on the regulatory mechanisms of autophagy within the context of periodontitis was observed. Subsequently, 10 hub genes were discerned through the establishment of a PPI network. Furthermore, dysregulated autophagic activity in periodontitis was validated, and 9 key genes (APP, KDR, IL1B, CXCL12, CXCR4, IL6, FOS, LCK, and SHC1) were identified through in vitro experiments. Our analysis unveiled an association between these genes and altered immune cell infiltration in periodontitis. Additionally, we predicted potential therapeutic agents such as curcumin, 27-hydroxycholesterol, and Trolox, showing promise in the treatment of periodontitis by modulating the autophagic process. Conclusion This study identified nine key genes for autophagy regulation and potential therapeutic agents in periodontitis. These findings not only enhance our comprehension of the pathological mechanisms of periodontitis but also provide substantial evidence for the advancement of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fen Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Zhipeng Zhu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Huaxi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhen Huang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Shengkai Xiao
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| | - Zhihua Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Disease, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
8
|
Bakri HH, Syed Abdul Rahman SN, Dol Bakri ZS, Munadziroh E, Wan Harun WHA. Antimicrobial activity of Ruta angustifolia L. Pers against periodontal pathogen: Porphyromonas gingivalis. PeerJ 2024; 12:e18751. [PMID: 39713137 PMCID: PMC11662893 DOI: 10.7717/peerj.18751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Background Porphyromonas gingivalis is widely recognised as a periodontal pathogen. In recent years, there has been growing interest in the use of medicinal plant extracts as alternative treatments for periodontitis to combat the emergence of antibiotic-resistant bacteria. Ruta angustifolia L. Pers has been traditionally used to treat various ailments, including oral bacterial infections. However, the antimicrobial potential of R. angustifolia extracts against the periodontal pathogen P. gingivalis remains unexplored. Hence, the aim of this study was to investigate the antimicrobial activity of R. angustifolia extracts against P. gingivalis. Methods The antimicrobial activity of R. angustifolia extracts (crude methanol, hexane and chloroform fractionated extracts) against P. gingivalis was evaluated using the well diffusion method. Additionally, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. Biofilm biomass assessment and live/dead cell viability assays were performed to analyse the effect of R. angustifolia extracts. Ultrastructural morphological changes in P. gingivalis cells were determined using field emission scanning electron microscopy (FE-SEM). Results It was found that P. gingivalis was susceptible to R. angustifolia extracts, with the chloroform fractionated extract exhibiting the highest inhibition zones. The MIC and MBC of chloroform fractionated extract were determined to be 6.25 mg/mL which substantially reduced P. gingivalis biofilm biomass. Live/dead cell viability assays showed the highest percentage of dead P. gingivalis cells after 48 h of incubation. FE-SEM confirmed that the chloroform fractionated extract effectively damaged the bacterial cell wall and altered the ultrastructural morphology of P. gingivalis. Conclusion The results indicated that extracts of R. angustifolia has the potential to be used as an alternative treatment in addition to conventional periodontal therapies.
Collapse
Affiliation(s)
- Husna Hazirah Bakri
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Zarith Safinaz Dol Bakri
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Elly Munadziroh
- Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Wan Himratul Aznita Wan Harun
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, East Java, Indonesia
| |
Collapse
|
9
|
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X, Yang Y. ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics 2024; 24:184. [PMID: 39370484 DOI: 10.1007/s10142-024-01465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
This paper elucidated the effects and mechanisms of aldehyde dehydrogenase 2 (ALDH2) on periodontitis. Rat model of periodontitis and periodontal ligament stem cell (PDLSC) model of periodontitis were constructed. PDLSC were transfected by ALDH2 overexpression vectors, and then treated by ML385 (Nrf2 inhibitor), ferrostatin-1 (ferroptosis inhibitor) and FIN56 (ferroptosis inducer), respectively. ALDH2, nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4) proteins was evaluated by immunohistochemistry and Western blot. Ferroptosis-related factors, including Fe2+ and glutathione (GSH), were assessed by commercial kits. Pro-inflammatory factors (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) and osteogenic differentiation-related proteins (osteocalcin [OCN] and runt-related transcription factor 2 [RUNX2]) were scrutinized by commercial kits and Western blot. In both periodontal tissues of periodontitis rats and PDLSC model of periodontitis, down-regulated ALDH2, Nrf2, GPX4 and GSH, but elevated Fe2+ level was discovered. ALDH2 overexpression in PDLSC resulted in an increase in Nrf2 expression. In PDLSC model of periodontitis, ALDH2 increased GPX4 and GSH levels, decreased Fe2+, IL-6 and TNF-α levels, and elevated OCN and RUNX2 expression. However, these effects of ALDH2 were counteracted by ML385. Additionally, the suppression of ALDH2 on IL-6 and TNF-α levels and promotion of it on OCN and RUNX2 expression in PDLSC model of periodontitis was further intensified by ferrostatin-1, but reversed by FIN56. ALDH2 may alleviate inflammation and facilitate osteogenic differentiation of PDLSC in periodontitis by hindering ferroptosis via activating Nrf2, suggesting it to be a promising candidate for treating periodontitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Chen Hu
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaoqin Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Meng Zhu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaozhou Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
10
|
Zhang Y, Yu C, Peng C, Peng F. Potential Roles and Mechanisms of Curcumin and its Derivatives in the Regulation of Ferroptosis. Int J Biol Sci 2024; 20:4838-4852. [PMID: 39309443 PMCID: PMC11414380 DOI: 10.7150/ijbs.90798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/25/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a recently discovered iron-dependent mode of oxidatively regulated cell death. It is not only associated with a wide range of diseases, but it is also a key component of many signaling pathways. In general, ferroptosis is a double-edged sword. On one hand, it induces nonapoptotic destruction of cancer cells, but on the other, it may lead to organ damage. Therefore, ferroptosis can be drug-targeted as a novel means of therapy. The properties of curcumin have been known for many years. It has a positive impact on the treatment of diseases such as cancer and inflammation. In this review, we focus on the regulation of ferroptosis by curcumin and its derivatives and review the main mechanisms by which curcumin affects ferroptosis. In conclusion, curcumin is a ferroptosis inducer with excellent anticancer efficacy, although it also exhibits organ protective and reparative effects by acting as a ferroptosis inhibitor. The differential regulation of ferroptosis by curcumin may be related to dose and cell type.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Zhao ZX, Yuan YM, Zhao ZH, Yao QH, Ye XQ, Wang YY, Liu HM, Jha R, Balasubramanian B, Liu WC. Phlorotannin Alleviates Liver Injury by Regulating Redox Balance, Apoptosis, and Ferroptosis of Broilers under Heat Stress. Antioxidants (Basel) 2024; 13:1048. [PMID: 39334707 PMCID: PMC11428727 DOI: 10.3390/antiox13091048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Heat stress (HS) poses a great challenge to the poultry industry by inducing oxidative damage to the liver, endangering the health and production of broilers. As an important type of seaweed polyphenols, phlorotannin has been shown to have antioxidant properties. The present study evaluated the protective effects of dietary phlorotannin on HS-induced liver injury in broilers based on oxidative damage parameters. A total of 108 twenty-one days old male Arbor Acres plus (AA+) broilers were randomly divided into three groups: TN group (thermoneutral, 24 ± 1 °C, fed with basal diet), HS group (HS, 33 ± 1 °C for 8 h/day, fed with basal diet), and HS + phlorotannin group (HS + 600 mg/kg phlorotannin). Each group has six replicate cages with six birds per cage. The feeding experiment lasted 21 days. At the termination of the feeding experiment (42 days old), samples were collected for analysis of morphological and biochemical features. The results showed that HS decreased the liver index, serum albumin (ALB) content, hepatic antioxidant enzymes activities of catalase (CAT), total superoxide dismutase (T-SOD), glutathione S-transferase (GST), and glutathione peroxidase (GSH-Px) (p < 0.05), while increasing the hepatic histopathology score, apoptosis rate, and malondialdehyde (MDA) content (p < 0.05) in 42-day-old broilers. Compared with the HS group, dietary phlorotannin improved the activities of antioxidant enzymes (GST and GSH-Px) but decreased the histopathology score and apoptosis rate in the liver (p < 0.05). Moreover, HS down-regulated hepatic mRNA expression of CAT1, NQO1, HO-1, and SLC7A11 (p < 0.05), while up-regulated hepatic mRNA expression of Keap1, MafG, IκBα, NF-κB P65, IFN-γ, TFR1, ACSL4, Bax, and Caspase-9 (p < 0.05). Compared with HS group, dietary phlorotannin up-regulated hepatic mRNA expression of Nrf2, CAT1, MafF, GSTT1, NQO1, HO-1, GCLC, GPX1, TNF-α, Fpn1, and SLC7A11 (p < 0.05), while down-regulated hepatic mRNA expression of IκBα, Bax, Caspase-9, and TFR1 (p < 0.05). In conclusion, dietary supplementation of 600 mg/kg phlorotannin could alleviate HS-induced liver injury via regulating oxidative status, apoptosis, and ferroptosis in broilers; these roles of phlorotannin might be associated with the regulation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Zhong-Xiang Zhao
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Yue-Ming Yuan
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Qing-Hua Yao
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Xue-Qing Ye
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Yao-Yao Wang
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Hui-Mei Liu
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.-X.Z.); (Y.-M.Y.); (Z.-H.Z.); (Q.-H.Y.); (X.-Q.Y.); (Y.-Y.W.); (H.-M.L.)
| |
Collapse
|
12
|
Chen J, Ou L, Liu W, Gao F. Exploring the molecular mechanisms of ferroptosis-related genes in periodontitis: a multi-dataset analysis. BMC Oral Health 2024; 24:611. [PMID: 38802844 PMCID: PMC11129485 DOI: 10.1186/s12903-024-04342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aims to elucidate the biological functions of ferroptosis-related genes in periodontitis, along with their correlation to tumor microenvironment (TME) features such as immune infiltration. It aims to provide potential diagnostic markers of ferroptosis for clinical management of periodontitis. METHODS Utilizing the periodontitis-related microarray dataset GSE16134 from the Gene Expression Omnibus (GEO) and a set of 528 ferroptosis-related genes identified in prior studies, this research unveils differentially expressed ferroptosis-related genes in periodontitis. Subsequently, a protein-protein interaction network was constructed. Subtyping of periodontitis was explored, followed by validation through immune cell infiltration and gene set enrichment analyses. Two algorithms, randomForest and SVM(Support Vector Machine), were employed to reveal potential ferroptosis diagnostic markers for periodontitis. The diagnostic efficacy, immune correlation, and potential transcriptional regulatory networks of these markers were further assessed. Finally, potential targeted drugs for differentially expressed ferroptosis markers in periodontitis were predicted. RESULTS A total of 36 ferroptosis-related genes (30 upregulated, 6 downregulated) were identified from 829 differentially expressed genes between 9 periodontitis samples and the control group. Subsequent machine learning algorithm screening highlighted 4 key genes: SLC1A5(Solute Carrier Family 1 Member 5), SLC2A14(Solute Carrier Family 1 Member 14), LURAP1L(Leucine Rich Adaptor Protein 1 Like), and HERPUD1(Homocysteine Inducible ER Protein With Ubiquitin Like Domain 1). Exploration of these 4 key genes, supported by time-correlated ROC analysis, demonstrated reliability, while immune infiltration results indicated a strong correlation between key genes and immune factors. Furthermore, Gene Set Enrichment Analysis (GSEA) was conducted for the four key genes, revealing enrichment in GO/KEGG pathways that have a significant impact on periodontitis. Finally, the study predicted potential transcriptional regulatory networks and targeted drugs associated with these key genes in periodontitis. CONCLUSIONS The ferroptosis-related genes identified in this study, including SLC1A5, SLC2A14, LURAP1L, and HERPUD1, may serve as novel diagnostic and therapeutic targets for periodontitis. They are likely involved in the occurrence and development of periodontitis through mechanisms such as immune infiltration, cellular metabolism, and inflammatory chemotaxis, potentially linking the ferroptosis pathway to the progression of periodontitis. Targeted drugs such as flurofamide, L-733060, memantine, tetrabenazine, and WAY-213613 hold promise for potential therapeutic interventions in periodontitis associated with these ferroptosis-related genes.
Collapse
Affiliation(s)
- Jili Chen
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Lijia Ou
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, 410006, China
| | - Weizhen Liu
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Feng Gao
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China.
| |
Collapse
|
13
|
Bao J, Yu X, Yang Y, Sun W, Wang Z, Chen L. Effects of the ferroptosis inducer erastin on osteogenic differentiation and biological pathways of primary osteoblasts. Connect Tissue Res 2024; 65:202-213. [PMID: 38578221 DOI: 10.1080/03008207.2024.2338348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Periodontitis is a chronic destructive inflammatory disease exacerbated by osteoblast dysfunction. Ferroptosis has emerged as a significant factor that could contribute to the pathological changes observed in periodontitis. However, the impact of ferroptosis on osteogenic differentiation and gene expression patterns of primary osteoblasts remain elusive. METHODS In this study, osteoblasts were osteogenically induced for specific durations with and without the ferroptosis inducer erastin. Subsequently, cell proliferation, ferroptosis-related molecules, and osteogenic differentiation capacity were assessed. Furthermore, the differences in transcriptome expression following erastin treatment were analyzed by RNA sequencing. RESULTS The results demonstrated that erastin treatment induced ferroptosis, resulting in suppressed cell proliferation and impaired osteogenic differentiation. Transcriptomic analysis revealed significant alterations in processes such as hydrogen peroxide catabolism, response to lipid peroxidation, and metal iron binding, as well as BMP receptor activity and collagen type XI trimer. CONCLUSION The ferroptosis inducer erastin inhibited osteoblast proliferation and differentiation. Our study provides novel insights into the effect of ferroptosis on osteogenesis, suggesting that targeting ferroptosis may present a promising approach in the treatment of periodontitis.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xufei Yu
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiu Wang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
15
|
Wang J, Xu RM, Cao QM, Ma BC, Zhang H, Hao HP. Mechanism of DYRK1a in myocardial ischemia-reperfusion injury by regulating ferroptosis of cardiomyocytes. Kaohsiung J Med Sci 2023; 39:1190-1199. [PMID: 37702441 DOI: 10.1002/kjm2.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
This study aimed to explore the role and mechanism of DYRK1a regulating ferroptosis of cardiomyocytes during myocardial ischemia-reperfusion injury (MIRI). H9c2 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R) were used as MIRI cell models and transfected with sh-DYRK1a or/and erastin. Cell viability, apoptosis, and DYRK1a mRNA/protein expression were measured accordingly. The levels of reactive oxygen species (ROS), iron, malondialdehyde (MDA), and glutathione (GSH) were determined. The expression of ferroptosis-related proteins (GPX4, SLC7A11, ACSL4, and TFR1) was detected using western blotting. The MIRI rat model was established to explore the possible role of DYRK1a suppression in cell injury and ferroptosis. OGD/R cells showed elevated mRNA and protein expression for DYRK1a. OGD/R cells transfected with sh-DYRK1a showed elevated cell viability, GSH content, increased GPX4 and SLC7A11 expression, suppressed iron content, MDA, ROS, ACSL4, and TFR1 expression, and reduced apoptosis rate, whereas co-transfection of sh-DYRK1a with erastin reversed the attenuation of sh-DYRK1a on MIRI. The suppressive effect of sh-DYRK1a on MI/R injury was confirmed in an MIRI rat model. DYRK1a mediates ferroptosis of cardiomyocytes to deteriorate MIRI progression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Rui-Ming Xu
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Qiu-Mei Cao
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Bing-Chen Ma
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Hao Zhang
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| | - Hua-Peng Hao
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Mohammad CA, Ali KM, Sha AM, Gul SS. Effect of Curcumin gel on inflammatory and anti-inflammatory biomarkers in experimental induced periodontitis in rats: a biochemical and immunological study. Front Microbiol 2023; 14:1274189. [PMID: 38033572 PMCID: PMC10685890 DOI: 10.3389/fmicb.2023.1274189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
This study aimed to determine the effect of local application of curcumin gels as adjunct to scaling and root planing (SRP) on the inflammatory biomarkers matrix metalloproteinase-8 (MMP-8), interleukin-6 (IL-6), C-reactive protein (CRP), and alkaline phosphatase (ALP), and the anti-inflammatory biomarker interleukin-10 (IL-10) in rats with experimentally induced periodontitis. Fifty-five adult Wistar rats with experimentally induced periodontitis were randomly divided into four groups: 15 rats received SRP + curcumin gel (CU), 15 rats received SRP + Tetracycline gel (Tet), 15 rats were treated with SRP alone, and 5 rats had experimental periodontitis without treatment (EP). Five systemically healthy rats without experimental periodontitis were used as the controls. Blood samples were collected by cardiac puncture from all groups after 2, 4, and 6 weeks of therapy. Biomarker levels determined by enzyme-linked immunosorbent assay (ELISA) and, ANOVA were used to compare the study groups. The results showed a significant increase in pro-inflammatory biomarkers and a significant decrease in anti-inflammatory biomarkers in the EP group compared with the control group (p < 0.05). The local application of curcumin or tetracycline gels resulted in a significant reduction in all inflammatory biomarkers at all periods of examination compared to the EP group. IL-10 levels gradually increased after 2 weeks, peaked at 4 weeks, and then decreased after 6 weeks, however, Tet showed statistically significant improvement compared to CU (p < 0.05). Adjunctive application of CU gel was as effective as Tet gel in the treatment of EP in rats by reducing inflammatory biomarkers and enhancing anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Chenar Anwar Mohammad
- Periodontics Department, College of Dentistry, Hawler Medical University, Erbil, Iraq
| | - Khadeeja Mohammed Ali
- Periodontics Department, College of Dentistry, Hawler Medical University, Erbil, Iraq
| | - Aram Mohammed Sha
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
- Smart Health Tower, Sulaymaniyah, Kurdistan, Iraq
| | - Sarhang Sarwat Gul
- Department of Periodontics, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
- Medical Laboratory Department, College of Health and Medical Technology, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| |
Collapse
|
17
|
Yui K, Imataka G, Shiohama T. Lipid Peroxidation of the Docosahexaenoic Acid/Arachidonic Acid Ratio Relating to the Social Behaviors of Individuals with Autism Spectrum Disorder: The Relationship with Ferroptosis. Int J Mol Sci 2023; 24:14796. [PMID: 37834244 PMCID: PMC10572946 DOI: 10.3390/ijms241914796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) undergo lipid peroxidation and conversion into malondialdehyde (MDA). MDA reacts with acetaldehyde to form malondialdehyde-modified low-density lipoprotein (MDA-LDL). We studied unsettled issues in the association between MDA-LDL and the pathophysiology of ASD in 18 individuals with autism spectrum disorders (ASD) and eight age-matched controls. Social behaviors were assessed using the social responsiveness scale (SRS). To overcome the problem of using small samples, adaptive Lasso was used to enhance the interpretability accuracy, and a coefficient of variation was used for variable selections. Plasma levels of the MDA-LDL levels (91.00 ± 16.70 vs. 74.50 ± 18.88) and the DHA/arachidonic acid (ARA) ratio (0.57 ± 0.16 vs. 0.37 ± 0.07) were significantly higher and the superoxide dismutase levels were significantly lower in the ASD group than those in the control group. Total SRS scores in the ASD group were significantly higher than those in the control group. The unbeneficial DHA/ARA ratio induced ferroptosis via lipid peroxidation. Multiple linear regression analysis and adaptive Lasso revealed an association of the DHA/ARA ratio with total SRS scores and increased MDA-LDL levels in plasma, resulting in neuronal deficiencies. This unbeneficial DHA/ARA-ratio-induced ferroptosis contributes to autistic social behaviors and is available for therapy.
Collapse
Affiliation(s)
- Kunio Yui
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan;
- Department of Pediatrics, Dokkyo Medical University, Mibu 321-0293, Japan;
| | - George Imataka
- Department of Pediatrics, Dokkyo Medical University, Mibu 321-0293, Japan;
| | - Tadashi Shiohama
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan;
| |
Collapse
|