1
|
Sakamuri SS, Sakamuri A. Unlocking hypoglycemia-associated brain microvascular dysfunction: critical insights from proteomic analysis. Neural Regen Res 2025; 20:1707-1708. [PMID: 39104104 PMCID: PMC11688553 DOI: 10.4103/nrr.nrr-d-24-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 08/07/2024] Open
Affiliation(s)
| | - Anil Sakamuri
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Donat Ergin B, Gadsby-Davis K, Mattishent K, Dhatariya K, Garner N, Hornberger M. Continuous Glucose Monitoring in Comorbid Dementia and Diabetes: The Evidence So Far. J Diabetes Sci Technol 2024:19322968241301058. [PMID: 39691964 DOI: 10.1177/19322968241301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and dementia are two of the leading chronic diseases in aging and are known to influence each other's disease progression. There is well-established evidence that T2DM increases the risk for cognitive decline and dementia. At the same time, people with cognitive changes or dementia can find it difficult to manage their diabetes, resulting in hyper- or hypoglycemic events which can exacerbate the dementia disease progression further. Monitoring of glucose variability is, therefore, of critical importance during aging and when people with T2DM develop dementia. The advent of continuous glucose monitoring (CGM) has allowed the monitoring of glucose variability in T2DM more closely. The CGM seems to be highly feasible and acceptable to use in older people with T2DM and has been shown to significantly reduce their hypoglycemic events, often resulting in falls. Less is known as to whether CGM can have a similar beneficial effect on people with T2DM who have cognitive impairment or dementia in community or hospital settings. AIMS The current perspective will explore how CGM has made an impact on T2DM management in older people and those with comorbid cognitive impairment or dementia. We will further explore opportunities and challenges of using CGM in comorbid T2DM and dementia in community and hospital settings.
Collapse
Affiliation(s)
| | | | - Katharina Mattishent
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk & Norwich University Hospital, Norwich, UK
| | - Ketan Dhatariya
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk & Norwich University Hospital, Norwich, UK
| | - Nikki Garner
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk & Norwich University Hospital, Norwich, UK
| | | |
Collapse
|
3
|
Karimi M, Kohandel Gargari O. Postprandial hypoglycemia as a complication of bariatric and metabolic surgery: a comprehensive review of literature. Front Surg 2024; 11:1449012. [PMID: 39555226 PMCID: PMC11564166 DOI: 10.3389/fsurg.2024.1449012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Postprandial hypoglycemia (PPH) is a challenging and significant complication that can occur following bariatric and metabolic surgery. Symptoms of PPH are typical of hypoglycemia, such as sweating, weakness, disorientation, palpitation, etc. The complex nature of PPH is essential to achieve accurate diagnosis and effective management. This review aims to give extensive coverage of the intricate nature of PPH common with bariatric and metabolic surgery, outlining its pathogenesis, risk factors, clinical presentation, diagnostic strategies, and treatment options. The study explores various clinical forms and pathogenic mechanisms behind PPH while discussing diagnostic tools like continuous glucose monitoring or mixed meal tolerance tests. Furthermore, it considers possible interventions, including dietary changes, pharmaceutical therapies, and surgeries, to relieve symptoms and improve patient's quality of life. It aims to comprehensively understand how healthcare professionals can effectively manage this disorder for patients undergoing bariatric and metabolic surgery.
Collapse
Affiliation(s)
- Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | | |
Collapse
|
4
|
Brossaud J, Barat P, Moisan MP. Cognitive Disorders in Type 1 Diabetes: Role of Brain Glucose Variation, Insulin Activity, and Glucocorticoid Exposure. Neuroendocrinology 2024; 115:211-225. [PMID: 39401497 DOI: 10.1159/000541989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The number of patients with type 2 diabetes (T2D) and type 1 diabetes (T1D) is on the rise, partly due to a global increase in new T1D cases among children. Beyond the well-documented microvascular and macrovascular complications, there is now substantial evidence indicating that diabetes also impacts the brain, leading to neuropsychological impairments. The risk of developing neuropsychiatric symptoms is notably higher in childhood due to the ongoing maturation of the brain, which makes it more susceptible to damage. Despite this awareness, the specific effects of diabetes on cognitive function remain poorly understood. SUMMARY This review synthesizes literature on the impact of diabetes on cognition and its relationship with brain structural changes. It presents data and hypotheses to explain how T1D contributes to cognitive dysfunction, with a particular focus on children and adolescents. The emphasis on the pediatric population is intentional, as young diabetic patients typically have fewer comorbidities, reducing confounding factors and simplifying the investigation of cognitive alterations. KEY MESSAGE We examine the roles of hypo- and hyperglycemia, as well as the emerging role of glucocorticoids in the development of neuropsychological disorders. When specific mechanisms related to T1D are available, they are highlighted; otherwise, data and hypotheses applicable to both T1D and T2D are discussed.
Collapse
Affiliation(s)
- Julie Brossaud
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Nuclear Medicine, Pessac, France
| | - Pascal Barat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Pediatric Endocrinology and DiaBEA Unit, Hôpital des Enfants, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
| |
Collapse
|
5
|
Dinarvand D, Panthakey J, Heidari A, Hassan A, Ahmed MH. The Intersection between Frailty, Diabetes, and Hypertension: The Critical Role of Community Geriatricians and Pharmacists in Deprescribing. J Pers Med 2024; 14:924. [PMID: 39338179 PMCID: PMC11433409 DOI: 10.3390/jpm14090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Frailty is a clinical syndrome prevalent among the elderly, characterised by a decline in physiological reserves and increased susceptibility to stressors, resulting in higher morbidity and mortality. Diabetes and hypertension are common in frail older individuals, often leading to polypharmacy. In this narrative review, we aimed to evaluate the relationship between frailty, diabetes, and hypertension and to identify effective management strategies and future research directions. Methods: This narrative review was conducted using the Scopus, Medline, PubMed, Cochrane Library, and Google Scholar databases. Results: Frailty significantly impacts the management and prognosis of diabetes and hypertension, which, in turn, affects the progression of frailty. Managing these conditions often involves multiple drugs to achieve strict glycaemic control and blood pressure targets, leading to polypharmacy and associated morbidities, including orthostatic hypotension, falls, fractures, hypoglycaemia, and reduced medication adherence. Identifying frailty and implementing strategies like deprescribing can mitigate the adverse effects of polypharmacy and improve outcomes and quality of life. Despite the availability of effective tools for identifying frailty, many frail individuals continue to be exposed to complex treatment regimens for diabetes and hypertension, leading to increased hospital admissions, morbidity, and mortality. Conclusions: Managing diabetes and hypertension in the frail ageing population requires a multidisciplinary approach involving hospital and community geriatricians and pharmacists. This is important due to the lack of sufficient clinical trials dedicated to diabetes and hypertension in the context of frailty. Future large population studies are needed to assess the best approaches for managing diabetes and hypertension in frail individuals.
Collapse
Affiliation(s)
- Daniel Dinarvand
- Department of Medicine, Ashford and St. Peter's Hospital NHS Foundation Trust, Surrey KT16 0PZ, UK
| | - Johann Panthakey
- Department of Medicine, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, UK
| | - Amirmohammad Heidari
- Department of Trauma and Orthopaedics, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8YE, UK
| | - Ahmed Hassan
- Faculty of Medicine, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed H Ahmed
- Department of Medicine and HIV Metabolic Clinic, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes MK6 5LD, UK
- Department of Geriatric Medicine, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes MK6 5LD, UK
- Honorary Senior Lecturer of the Faculty of Medicine and Health Sciences, University of Buckingham, Buckingham MK18 1EG, UK
| |
Collapse
|
6
|
Ding X, Yin L, Zhang L, Zhang Y, Zha T, Zhang W, Gui B. Diabetes accelerates Alzheimer's disease progression in the first year post mild cognitive impairment diagnosis. Alzheimers Dement 2024; 20:4583-4593. [PMID: 38865281 PMCID: PMC11247667 DOI: 10.1002/alz.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Mild cognitive impairment (MCI) heightens Alzheimer's disease (AD) risk, with diabetes mellitus (DM) potentially exacerbating this vulnerability. This study identifies the optimal intervention period and neurobiological targets in MCI to AD progression using the Alzheimer's Disease Neuroimaging Initiative dataset. METHODS Analysis of 980 MCI patients, categorized by DM status, used propensity score matching and inverse probability treatment weighting to assess rate of conversion from MCI to AD, neuroimaging, and cognitive changes. RESULTS DM significantly correlates with cognitive decline and an increased risk of progressing to AD, especially within the first year of MCI follow-up. It adversely affects specific brain structures, notably accelerating nucleus accumbens atrophy, decreasing gray matter volume and sulcal depth. DISCUSSION Findings suggest the first year after MCI diagnosis as the critical window for intervention. DM accelerates MCI-to-AD progression, targeting specific brain areas, underscoring the need for early therapeutic intervention. HIGHLIGHTS Diabetes mellitus (DM) accelerates mild cognitive impairment (MCI)-to-Alzheimer's disease (AD) progression within the first year after MCI diagnosis. DM leads to sharper cognitive decline within 12 months of follow-up. There is notable nucleus accumbens atrophy observed in MCI patients with DM. DM causes significant reductions in gray matter volume and sulcal depth. There are stronger correlations between cognitive decline and brain changes due to DM.
Collapse
Affiliation(s)
- Xiahao Ding
- Department of AnesthesiologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Yin
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lin Zhang
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Zhang
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tianming Zha
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wen Zhang
- Department of RadiologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Medical Imaging Centerthe Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
| | - Bo Gui
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | | |
Collapse
|
7
|
Şen GA, Tanrıkulu S, Beşer B, Akçakalem Ş, Çakır S, Dinççağ N. Effects of prediabetes and type 2 diabetes on cognitive functions. Endocrine 2024; 85:190-195. [PMID: 38358557 DOI: 10.1007/s12020-024-03720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of glycemic impairment in prediabetes on cognitive impairment and the impact of glycemic control on cognitive function in patients with diabetes. MATERIALS AND METHODS This age- and sex-matched case-control study included a total of 80 individuals: 20 patients with prediabetes, 20 patients with well-controlled type 2 diabetes mellitus (T2DM) (HbA1C < %7.5), 20 patients with poorly controlled T2DM (HbA1C >% 7.5), and 20 healthy controls. RESULTS The poorly controlled T2DM patients performed significantly worse than controls and patients with prediabetes in the verbal memory process test (p = 0.041). In Trail Making Test B, the well-controlled and poorly-controlled groups with diabetes performed significantly worse (p = 0.015) than patients with prediabetes and controls, and in the Wisconsin Card Sorting Test (WCST), all three patient groups performed significantly worse (p = 0.007) than controls. CONCLUSION T2DM causes early brain aging and declines cognitive functions since the prediabetic stage. Poor glycemic control in T2DM patients contributes to cognitive impairments, especially in learning.
Collapse
Affiliation(s)
- Gülin Alkan Şen
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey.
- Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Seher Tanrıkulu
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Acibadem Atasehir Hospital, Istanbul, Turkey
| | - Birsu Beşer
- Department of Neurology, Istanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Şükriye Akçakalem
- Department of Neurology, Istanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Sibel Çakır
- Department of Psychiatry, Istanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Nevin Dinççağ
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Kim RY, Joo Y, Ha E, Hong H, Suh C, Shim Y, Lee H, Kim Y, Cho JH, Yoon S, Lyoo IK. Alterations in Brain Morphometric Networks and Their Relationship with Memory Dysfunction in Patients with Type 2 Diabetes Mellitus. Exp Neurobiol 2024; 33:107-117. [PMID: 38724480 PMCID: PMC11089400 DOI: 10.5607/en24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/15/2024] Open
Abstract
Cognitive dysfunction, a significant complication of type 2 diabetes mellitus (T2DM), can potentially manifest even from the early stages of the disease. Despite evidence of global brain atrophy and related cognitive dysfunction in early-stage T2DM patients, specific regions vulnerable to these changes have not yet been identified. The study enrolled patients with T2DM of less than five years' duration and without chronic complications (T2DM group, n=100) and demographically similar healthy controls (control group, n=50). High-resolution T1-weighted magnetic resonance imaging data were subjected to independent component analysis to identify structurally significant components indicative of morphometric networks. Within these networks, the groups' gray matter volumes were compared, and distinctions in memory performance were assessed. In the T2DM group, the relationship between changes in gray matter volume within these networks and declines in memory performance was examined. Among the identified morphometric networks, the T2DM group exhibited reduced gray matter volumes in both the precuneus (Bonferroni-corrected p=0.003) and insular-opercular (Bonferroni-corrected p=0.024) networks relative to the control group. Patients with T2DM demonstrated significantly lower memory performance than the control group (p=0.001). In the T2DM group, reductions in gray matter volume in both the precuneus (r=0.316, p=0.001) and insular-opercular (r=0.199, p=0.047) networks were correlated with diminished memory performance. Our findings indicate that structural alterations in the precuneus and insular-opercular networks, along with memory dysfunction, can manifest within the first 5 years following a diagnosis of T2DM.
Collapse
Affiliation(s)
- Rye Young Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Chaewon Suh
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| | - Youngeun Shim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hyeonji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yejin Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jae-Hyoung Cho
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Yonamine CY, Michalani MLE, Moreira RJ, Machado UF. Glucose Transport and Utilization in the Hippocampus: From Neurophysiology to Diabetes-Related Development of Dementia. Int J Mol Sci 2023; 24:16480. [PMID: 38003671 PMCID: PMC10671460 DOI: 10.3390/ijms242216480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The association of diabetes with cognitive dysfunction has at least 60 years of history, which started with the observation that children with type 1 diabetes mellitus (T1D), who had recurrent episodes of hypoglycemia and consequently low glucose supply to the brain, showed a deficit of cognitive capacity. Later, the growing incidence of type 2 diabetes mellitus (T2D) and dementia in aged populations revealed their high association, in which a reduced neuronal glucose supply has also been considered as a key mechanism, despite hyperglycemia. Here, we discuss the role of glucose in neuronal functioning/preservation, and how peripheral blood glucose accesses the neuronal intracellular compartment, including the exquisite glucose flux across the blood-brain barrier (BBB) and the complex network of glucose transporters, in dementia-related areas such as the hippocampus. In addition, insulin resistance-induced abnormalities in the hippocampus of obese/T2D patients, such as inflammatory stress, oxidative stress, and mitochondrial stress, increased generation of advanced glycated end products and BBB dysfunction, as well as their association with dementia/Alzheimer's disease, are addressed. Finally, we discuss how these abnormalities are accompained by the reduction in the expression and translocation of the high capacity insulin-sensitive glucose transporter GLUT4 in hippocampal neurons, which leads to neurocytoglycopenia and eventually to cognitive dysfunction. This knowledge should further encourage investigations into the beneficial effects of promising therapeutic approaches which could improve central insulin sensitivity and GLUT4 expression, to fight diabetes-related cognitive dysfunctions.
Collapse
Affiliation(s)
- Caio Yogi Yonamine
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Maria Luiza Estimo Michalani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| | - Rafael Junges Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| |
Collapse
|
10
|
Mancinetti F, Xenos D, De Fano M, Mazzieri A, Porcellati F, Boccardi V, Mecocci P. Diabetes-Alzheimer's connection in older age: SGLT2 inhibitors as promising modulators of disease pathways. Ageing Res Rev 2023; 90:102018. [PMID: 37481164 DOI: 10.1016/j.arr.2023.102018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most frequent cause of dementia in older persons. Subjects affected by type 2 diabetes mellitus (T2DM) are at higher risk of vascular disease, cognitive decline, and dementia. LOAD has many characteristics shared with impaired insulin signaling pathways, and substantial evidence has demonstrated a pivotal role in dysregulated glucose metabolism in its pathogenesis. Recent studies have shown that some anti-diabetic drugs, other than regulating the metabolism of peripheral tissues, can also modulate the brain's metabolism, reduce inflammation, and have a direct neuroprotective effect. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are a newer class with many pleiotropic effects that may have strong neuroprotective potential. After a summary of the principal "anti-diabetic" drugs acting as suitable candidates in treating LOAD, this narrative review explored the potential role of SGLT2i on cognition from pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Francesca Mancinetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy
| | - Dionysios Xenos
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy
| | - Michelantonio De Fano
- Institute of Internal Medicine, Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia, Italy
| | - Alessio Mazzieri
- Institute of Internal Medicine, Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia, Italy
| | - Francesca Porcellati
- Institute of Internal Medicine, Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia, Italy
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy.
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Italy; Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Giménez-Llort L. Editorial: The crosstalk of different mechanisms in cognitive impairment associated with aging, Alzheimer's disease, and related dementias. Front Aging Neurosci 2023; 15:1258893. [PMID: 37662549 PMCID: PMC10471964 DOI: 10.3389/fnagi.2023.1258893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|