1
|
Kłapcia A, Domalik-Pyzik P. Hydrogel Dressings as Insulin Delivery Systems for Diabetic Wounds. Front Biosci (Elite Ed) 2025; 17:26446. [PMID: 40150982 DOI: 10.31083/fbe26446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 03/29/2025]
Abstract
Diabetic wounds are one of the most common and challenging complications of diabetes. Similar to chronic wounds, diabetic wounds are difficult to treat due to prolonged inflammation, a lack of angiogenesis, abnormal differentiation of new scar tissue, and the occurrence of numerous bacterial infections. Moreover, elevated sugar levels in tissues disrupt the healing process by enhancing inflammatory reactions, disrupting signaling pathways, and leading to the production of abnormal biological structures, which contribute to improper cell differentiation. Traditional dressings, such as bandages, gauze, and semi-occlusive foams, are inadequate for diabetic wounds with high exudation; moreover, frequently changing the dressing can cause secondary irritation. Hence, innovative hydrogel dressings are being developed, which, thanks to their soft polymer matrix, provide an ideal substrate for regenerating tissue. Hydrogels also allow for the introduction and controlled release of growth factors, making them a promising solution for treating diabetic wounds. Recently, researchers have focused on insulin, a hormone secreted by the human body to lower blood sugar levels, due to its interesting characteristics, such as supporting anti-inflammatory and proangiogenic processes and stimulating cell migration and proper proliferation. This review discusses the most important aspects of diabetes and diabetic wounds and traditional and innovative treatment methods, particularly hydrogel dressings used as systems for insulin delivery in response to glucose concentration.
Collapse
Affiliation(s)
- Agnieszka Kłapcia
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland
| | - Patrycja Domalik-Pyzik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland
| |
Collapse
|
2
|
Yadu N, Singh M, Singh D, Keshavkant S. Mechanistic insights of diabetic wound: Healing process, associated pathways and microRNA-based delivery systems. Int J Pharm 2025; 670:125117. [PMID: 39719258 DOI: 10.1016/j.ijpharm.2024.125117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Wounds that represent one of the most critical complications can occur in individuals suffering from diabetes mellitus, and results in the need for hospitalisation and, in severe cases, require amputation. This condition is primarily characterized by infections, persistent inflammation, and delayed healing processes, which exacerbate the overall health of the patients. As per the standard mechanism, signalling pathways such as PI3K/AKT, HIF-1, TGF-β, Notch, Wnt/β-Cat, NF-κB, JAK/STAT, TLR, and Nrf2 play major roles in inflammatory, proliferative and remodelling phases of wound healing. However, dysregulation of the above pathways has been seen during the healing of diabetic wounds. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of various genes and signalling pathways which are associated with the process of wound healing. In the past few years, there has been a great deal of interest in the potential of miRNAs as biological agents in the management of a number of disorders. These miRNAs have been shown to modulate expression of genes involved in the healing process of wounds. There have been previous reviews pertaining to clinical trials examining miRNAs in several disorders, but only a few clinical studies have examined involvement of miRNAs in healing of wounds. Considering the therapeutic promise, there are several obstacles concerning their instabilities and inefficient delivery into the target cells. Therefore, this review is an attempt to discuss precise roles of signalling pathways and miRNAs in different phases of wound healing, and their aberrant regulation in diabetic wounds, particularly. It has also compiled a range of delivery mechanisms as well as an overview of the latest findings pertaining to miRNAs and associated delivery systems for improved healing of diabetic wounds.
Collapse
Affiliation(s)
- Nidhi Yadu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
3
|
Razif R, Fadilah NIM, Ahmad H, Looi Qi Hao D, Maarof M, Fauzi MB. Asiaticoside-Loaded Multifunctional Bioscaffolds for Enhanced Hyperglycemic Wound Healing. Biomedicines 2025; 13:277. [PMID: 40002691 PMCID: PMC11853099 DOI: 10.3390/biomedicines13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
The review explores the potential of asiaticoside-loaded bioscaffolds to improve the management of hyperglycemic wounds, particularly diabetic foot ulcers (DFUs). Asiaticoside, sourced from Centella asiatica, possesses properties that address DFUs' healing challenges: insufficient angiogenesis, persistent inflammation, and delayed tissue regeneration. By incorporating asiaticoside into bioscaffold 3D designs including hydrogels, microneedle arrays, and nanofibrous meshes, therapeutic efficacy is optimized. This review examines the mechanisms of asiaticoside in wound healing (collagen production, angiogenesis modulation, inflammation reduction, and cell migration and proliferation) based on in vitro and in vivo studies. Asiaticoside also demonstrates synergistic abilities with other biomaterials, creating the possibility of more effective therapies. While preclinical research is promising, clinical trials are crucial to evaluate the efficacy and safety of asiaticoside-loaded bioscaffolds in patients with DFUs. Asiaticoside-loaded bioscaffolds are a significant development in wound healing and may aid in treating hyperglycemic wound complications. Their ability to offer individualized treatment plans has the potential to enhance the quality of life of those who suffer from diabetes. This review is based on a thorough literature search (2019-2024) across multiple databases, excluding secondary literature and non-English articles.
Collapse
Affiliation(s)
- Raniya Razif
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Haslina Ahmad
- Integrated Chemical Biophysics Research, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Daniel Looi Qi Hao
- My Cytohealth Sdn Bhd, Hive 5, Taman Teknologi, MRANTI, Bukit Jalil 57000, Kuala Lumpur, Malaysia;
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (R.R.); (N.I.M.F.); (M.M.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
4
|
Vasileva LA, Gaynanova GA, Romanova EA, Petrov KA, Feng C, Zakharova LY, Sinyashin OG. Supramolecular approach to the design of nanocarriers for antidiabetic drugs: targeted patient-friendly therapy. RUSSIAN CHEMICAL REVIEWS 2024; 93:RCR5150. [DOI: 10.59761/rcr5150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Diabetes and its complications derived are among serious global health concerns that critically deteriorate the quality of life of patients and, in some cases, result in lethal outcome. Herein, general information on the pathogenesis, factors aggravating the course of the disease and drugs used for the treatment of two types of diabetes are briefly discussed. The aim of the review is to introduce supramolecular strategies that are currently being developed for the treatment of diabetes mellitus and that present a very effective alternative to chemical synthesis, allowing the fabrication of nanocontainers with switchable characteristics that meet the criteria of green chemistry. Particular attention is paid to organic (amphiphilic and polymeric) formulations, including those of natural origin, due to their biocompatibility, low toxicity, and bioavailability. The advantages and limitations of different nanosystems are discussed, with emphasis on their adaptivity to noninvasive administration routes.<br>The bibliography includes 378 references.
Collapse
Affiliation(s)
- L. A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - G. A. Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - E. A. Romanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - K. A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Ch. Feng
- Shanghai Jiao Tong University, Shanghai, China
| | - L. Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - O. G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
5
|
Aghayants S, Zhu J, Yu J, Tao R, Li S, Zhou S, Zhou Y, Zhu Z. The emerging modulators of non-coding RNAs in diabetic wound healing. Front Endocrinol (Lausanne) 2024; 15:1465975. [PMID: 39439564 PMCID: PMC11493653 DOI: 10.3389/fendo.2024.1465975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.
Collapse
Affiliation(s)
- Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Luo Y, Gao Z, Guo H, Duan K, Lan T, Tao B, Shen X, Guo Q. Multifunctional Photothermal Nanorods for Targeted Treatment of Drug-Resistant Bacteria-Induced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51480-51495. [PMID: 39287360 DOI: 10.1021/acsami.4c10198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The challenge of drug-resistant bacteria-induced wound healing in clinical and public healthcare settings is significant due to the negative impacts on surrounding tissues and difficulties in monitoring the healing progress. We developed photothermal antibacterial nanorods (AuNRs-PU) with the aim of selectively targeting and combating drug-resistant Pseudomonas aeruginosa (P. aeruginosa). The AuNRs-PU were engineered with a bacterial-specific targeting polypeptide (UBI29-41) and a bacterial adhesive carbohydrate polymer composed of galactose and phenylboronic acid. The objective was to facilitate sutureless wound closure by specially distinguishing between bacteria and nontarget cells and subsequently employing photothermal methods to eradicate the bacteria. AuNRs-PU demonstrated high photothermal conversion efficiency in 808 nm laser and effectively caused physical harm to drug-resistant P. aeruginosa. By integrating the multifunctional bacterial targeting copolymer onto AuNRs, AuNRs-PU showed rapid and efficient bacterial targeting and aggregation in the presence of bacteria and cells, consequently shielding cells from bacterial harm. In a diabetic rat wound model, AuNRs-PU played a crucial role in enhancing healing by markedly decreasing inflammation and expediting epidermis formation, collagen deposition, and neovascularization levels. Consequently, the multifunctional photothermal therapy shows promise in addressing the complexities associated with managing drug-resistant infected wound healing.
Collapse
Affiliation(s)
- Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Zhenglan Gao
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Honglei Guo
- Department of Nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Kunyuan Duan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Tianyu Lan
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, Guizhou 550025, China
| | - Buhui Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 561113, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guian New District, Guizhou 561113, China
| |
Collapse
|
7
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Jian X, Han J, Chen J, Xiao S, Deng C. Therapeutic potential of microRNA-engineered exosomes in diabetic wound healing: a meta-analysis. Arch Dermatol Res 2024; 316:493. [PMID: 39066806 DOI: 10.1007/s00403-024-03234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Diabetic wounds, a prevalent diabetes complication, pose significant challenges in treatment. MicroRNA-engineered exosomes (miR-exo) are a promising new treatment for diabetic wounds; however, their mechanism remains to be completely understood. Therefore, we aimed to conduct a meta-analysis to evaluate the efficacy of miR-exo treatment in the management of diabetic wounds. To achieve this aim, academic databases, including PubMed, Embase, Web of Science, and the Cochrane Library, were searched for papers published before July 4, 2023. Outcome indicators (e.g., rate of wound healing, neovascular count, rate of re-epithelialization, deposition of collagen, breadth of scar, and inflammatory factors) were assessed. Six studies (total of 72 animals) met inclusion criteria and were analyzed. The amalgamated data revealed that miR-exo treatment exhibited superior results compared to those of control therapy. miR-exo treatment significantly enhanced the rate of wound healing, increased the number of neovascular formations, accelerated the rate of re-epithelialization, increased collagen deposition, reduced scar width, while significantly downregulating the expression of inflammatory factors. Our findings indicate that miR-exo treatment augments overall diabetic wound healing, especially when administered in conjunction with innovative dressings. To ascertain the optimal parameters for miR-exo treatment in managing diabetic wounds, future studies must encompass rigorous, large-scale, double-blinded clinical trials while incorporating long-term follow-up assessments for enhanced reliability and accuracy.
Collapse
Affiliation(s)
- Xichao Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, P. R. China
| | - Jiansu Han
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, P. R. China
| | - Junzhe Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, P. R. China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, P. R. China
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi, 563003, Guizhou, P. R. China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, P. R. China.
- Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi, 563003, Guizhou, P. R. China.
| |
Collapse
|
9
|
Ren J, Yang X. Nanomotor-hydrogel Delivery System with Enhanced Antibacterial Performance for Wound Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39016444 DOI: 10.1021/acs.langmuir.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In this study, we present a novel system consisting of nanomotors and a hydrogel. Calcium carbonate nanomotors are prepared using layer-by-layer self-assembly technology with calcium carbonate nanoparticles as the core and catalase (CAT) and polydopamine (PDA) as the shell. Calcium carbonate nanomotors were loaded into a Schiff base hydrogel to synthesize the CaCO3@NM-hydrogel system. A nanomotor is a device that works on the nanoscale to convert some form of energy to mechanical energy. The motion speed of the system in 5.0 mM H2O2 aqueous solution under near-infrared light (NIR) irradiation with a power density of 1.8 W/cm2 is 13.6 μm/s. The addition of CaCO3@NM further promotes gelation and improves the mechanical properties. The energy storage modulus increases to 4.0 × 103 Pa, which is 50 times higher. Schiff base hydrogels form dynamic reversible chemical bonds due to inter- and intramolecular hydrogen bonding. They also have good self-healing properties, as observed by measuring the energy storage modulus versus the loss modulus at 1 versus 10 kHz. The results show that the system significantly inhibited the growth of both Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli, after 48 h, with an inhibition rate of nearly 95%. These findings provide a basis for further research and potential applications of the system in wound dressings.
Collapse
Affiliation(s)
- Jiaoyu Ren
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Xinyu Yang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| |
Collapse
|
10
|
Kondratenko AA, Tovpeko DV, Volov DA, Kalyuzhnaya LI, Chernov VE, Glushakov RI, Sirotkina MY, Zemlyanoy DA, Bildyug NB, Chebotarev SV, Alexander-Sinclair EI, Nashchekin AV, Belova AD, Grigoriev AM, Kirsanova LA, Basok YB, Sevastianov VI. Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds. Biomimetics (Basel) 2024; 9:405. [PMID: 39056846 PMCID: PMC11274938 DOI: 10.3390/biomimetics9070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The umbilical cord is a material that enhances regeneration and is devoid of age-related changes in the extracellular matrix (ECM). The aim of this work was to develop a biodegradable scaffold from a decellularized human umbilical cord (UC-scaffold) to heal full-thickness wounds. Decellularization was performed with 0.05% sodium dodecyl sulfate solution. The UC-scaffold was studied using morphological analysis methods. The composition of the UC-scaffold was studied using immunoblotting and Fourier transform infrared spectroscopy. The adhesion and proliferation of mesenchymal stromal cells were investigated using the LIVE/DEAD assay. The local reaction was determined by subcutaneous implantation in mice (n = 60). A model of a full-thickness skin wound in mice (n = 64) was used to assess the biological activity of the UC-scaffold. The proposed decellularization method showed its effectiveness in the umbilical cord, as it removed cells and retained a porous structure, type I and type IV collagen, TGF-β3, VEGF, and fibronectin in the ECM. The biodegradation of the UC-scaffold in the presence of collagenase, its stability during incubation in hyaluronidase solution, and its ability to swell by 1617 ± 120% were demonstrated. Subcutaneous scaffold implantation in mice showed gradual resorption of the product in vivo without the formation of a dense connective tissue capsule. Epithelialization of the wound occurred completely in contrast to the controls. All of these data suggest a potential for the use of the UC-scaffold.
Collapse
Affiliation(s)
- Albina A. Kondratenko
- Research Department of Biomedical Research of the Research Center, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
- Department of Histology and Embryology, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Dmitry V. Tovpeko
- Research Department of Biomedical Research of the Research Center, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Daniil A. Volov
- Research Department of Biomedical Research of the Research Center, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Lidia I. Kalyuzhnaya
- Research Department of Biomedical Research of the Research Center, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Vladimir E. Chernov
- Research Department of Biomedical Research of the Research Center, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Ruslan I. Glushakov
- Research Department of Biomedical Research of the Research Center, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
- Department of Pharmacology with a Course of Clinical Pharmacology and Pharmacoeconomics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Maria Y. Sirotkina
- Cellular biotechnology Centre for Cell Technology (CCT), Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia (N.B.B.)
| | - Dmitry A. Zemlyanoy
- Department of General Hygiene, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Natalya B. Bildyug
- Cellular biotechnology Centre for Cell Technology (CCT), Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia (N.B.B.)
| | - Sergey V. Chebotarev
- Research Department of Biomedical Research of the Research Center, S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Elga I. Alexander-Sinclair
- Cellular biotechnology Centre for Cell Technology (CCT), Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia (N.B.B.)
| | - Alexey V. Nashchekin
- Laboratory “Characterization of Materials and Structures of Solid State Electronics”, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Aleksandra D. Belova
- Department for Biomedical Technologies and Tissue Engineering. Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia
| | - Alexey M. Grigoriev
- Department for Biomedical Technologies and Tissue Engineering. Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia
| | - Ludmila A. Kirsanova
- Department for Biomedical Technologies and Tissue Engineering. Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia
| | - Yulia B. Basok
- Department for Biomedical Technologies and Tissue Engineering. Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia
| | - Victor I. Sevastianov
- Department for Biomedical Technologies and Tissue Engineering. Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia
| |
Collapse
|
11
|
Zhou Y, Jia W, Bi J, Liu M, Liu L, Zhou H, Gu G, Chen Z. Sulfated hyaluronic acid/collagen-based biomimetic hybrid nanofiber skin for diabetic wound healing: Development and preliminary evaluation. Carbohydr Polym 2024; 334:122025. [PMID: 38553224 DOI: 10.1016/j.carbpol.2024.122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Diabetic foot ulcers (DFUs) are one of the most serious and devastating complication of diabetes, manifesting as foot ulcers and impaired wound healing in patients with diabetes mellitus. To solve this problem, sulfated hyaluronic acid (SHA)/collagen-based nanofibrous biomimetic skins was developed and used to promote the diabetic wound healing and skin remodeling. First, SHA was successfully synthetized using chemical sulfation and incorporated into collagen (COL) matrix for preparing the SHA/COL hybrid nanofiber skins. The polyurethane (PU) was added into those hybrid scaffolds to make up the insufficient mechanical properties of SHA/COL nanofibers, the morphology, surface properties and degradation rate of hybrid nanofibers, as well as cell responses upon the nanofibrous scaffolds were studied to evaluate their potential for skin reconstruction. The results demonstrated that the SHA/COL, SHA/HA/COL hybrid nanofiber skins were stimulatory of cell behaviors, including a high proliferation rate and maintaining normal phenotypes of specific cells. Notably, SHA/COL and SHA/HA/COL hybrid nanofibers exhibited a significantly accelerated wound healing and a high skin remodeling effect in diabetic mice compared with the control group. Overall, SHA/COL-based hybrid scaffolds are promising candidates as biomimetic hybrid nanofiber skin for accelerating diabetic wound healing.
Collapse
Affiliation(s)
- Yuanmeng Zhou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Weibin Jia
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR 999077, China
| | - Jiexue Bi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Meng Liu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Liling Liu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Hang Zhou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Zonggang Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Armstrong DG, Orgill DP, Galiano RD, Glat PM, Kaufman JP, Carter MJ, DiDomenico LA, Zelen CM. A purified reconstituted bilayer matrix shows improved outcomes in treatment of non-healing diabetic foot ulcers when compared to the standard of care: Final results and analysis of a prospective, randomized, controlled, multi-centre clinical trial. Int Wound J 2024; 21:e14882. [PMID: 38606794 PMCID: PMC11010253 DOI: 10.1111/iwj.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
As the incidence of diabetic foot ulcers (DFU) increases, better treatments that improve healing should reduce complications of these ulcers including infections and amputations. We conducted a randomized controlled trial comparing outcomes between a novel purified reconstituted bilayer membrane (PRBM) to the standard of care (SOC) in the treatment of non-healing DFUs. This study included 105 patients who were randomized to either of two treatment groups (n = 54 PRBM; n = 51 SOC) in the intent to treat (ITT) group and 80 who completed the study per protocol (PP) (n = 47 PRBM; n = 33 SOC). The primary endpoint was the percentage of wounds closed after 12 weeks. Secondary outcomes included percent area reduction, time to healing, quality of life, and cost to closure. The DFUs that had been treated with PRBM healed at a higher rate than those treated with SOC (ITT: 83% vs. 45%, p = 0.00004, PP: 92% vs. 67%, p = 0.005). Wounds treated with PRBM also healed significantly faster than those treated with SOC with a mean of 42 versus 62 days for SOC (p = 0.00074) and achieved a mean wound area reduction within 12 weeks of 94% versus 51% for SOC (p = 0.0023). There were no adverse events or serious adverse events that were related to either the PRBM or the SOC. In comparison to the SOC, DFUs healed faster when treated with PRBM. Thus, the use of this PRBM is an effective option for the treatment of chronic DFUs.
Collapse
Affiliation(s)
- David G. Armstrong
- Division of Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dennis P. Orgill
- Division of Plastic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Robert D. Galiano
- Division of Plastic Surgery, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Paul M. Glat
- Surgery and PediatricsDrexel University College of Medicine, St. Christopher's Hospital for ChildrenPhiladelphiaPennsylvaniaUSA
| | - Jarrod P. Kaufman
- Department of Surgery, Temple University School of Medicine and McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | | | | |
Collapse
|
13
|
Wang M, Cao X, Shang Y, Jiang Y, Chen P, Duan C, Zhang D, Wang P, Ji J, Gong Z. Correlational analysis of PLIN1 with inflammation in diabetic foot ulcer wounds. Diabetes Res Clin Pract 2024; 209:111605. [PMID: 38453058 DOI: 10.1016/j.diabres.2024.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The persistent presence of inflammation is a recognized pathogenic mechanisms of diabetic foot ulcers (DFUs). We aimed to investigate the expression of PLIN1 in tissues from DFU patients and assess its potential association with inflammation-induced damage. METHODS We performed transcriptome sequencing and correlation analysis of the foot skin from patients with or without DFUs. Additionally, we examined the correlation between PLIN1 and related inflammatory indicators by analyzing PLIN1 expression in tissue and serum samples and through high-glucose stimulation of keratinocytes (HaCaT cells). RESULTS PLIN1 is upregulated in the tissue and serum from DFU patients. Additionally, PLIN1 shows a positive correlation with leukocytes, neutrophils, monocytes, C-reactive protein, and procalcitonin in the serum, as well as IL-1β and TNF-α in the tissues. Experiments with Cells demonstrated that reduced expression of PLIN1 leads to significantly decreased expression of iNOS, IL-1β, IL-6, IL-18, and TNF-α. PLIN1 may mediate wound inflammatory damage through the NF-κB signaling pathway. CONCLUSION Our findings suggest that PLIN1 mediates the inflammatory damage in DFU, offering new prospects for the treatment of DFU.
Collapse
Affiliation(s)
- Mengting Wang
- Medical School, Nantong University, Nantong 226001, China; Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China
| | - Xiaoliang Cao
- Medical School, Nantong University, Nantong 226001, China; Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China
| | - Yasu Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China
| | - Peng Chen
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China
| | - Ping Wang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China.
| | - Jianfeng Ji
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China.
| | - Zhenhua Gong
- Medical School, Nantong University, Nantong 226001, China; Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong 226001, China; Nantong Clinical Medical College, Kangda College of Nanjing Medical University, Nantong 226001, China.
| |
Collapse
|
14
|
Liao C, Zhu M, Ding H, Li Y, Sun Q, Li X. Comparing the traditional and emerging therapies for enhancing wound healing in diabetic patients: A pivotal examination. Int Wound J 2024; 21:e14488. [PMID: 37984812 PMCID: PMC10898383 DOI: 10.1111/iwj.14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic non-healing ulcers are common among diabetic patients, posing significant therapeutic challenges. This study compared traditional therapies (TT) and emerging therapies (ET) for enhancing diabetic patients' wound healing. A total of 150 diabetic patients with chronic ulcers, ages 30-65, were randomly assigned to one of two groups: TT (n = 75) or ET (n = 75). ET included growth factors, bioengineered skin substitutes, and hyperbaric oxygen therapy, while TT for wound healing predominantly included debridement, saline-moistened dressings, and off-loading techniques. The primary outcome was the percentage of lesions that healed within 12 weeks, which was assessed at intervals. Secondary outcomes included time to wound recovery, pain using Visual Analogue Scale (VAS), and life quality via Wound-QoL questionnaire. By the 12th week, the ET group had a repair rate of 81.33% compared to 57.33% in TT group (p < 0.05). ET exhibited superior pain reduction (VAS score: 4.7 ± 1.6 for ET vs. 6.2 ± 1.4 for TT, p < 0.05) and improved life quality (Wound-QoL score: 61.8 ± 9.1 for ET vs. 44.3 ± 10.3 for TT, p < 0.05). However, there were slightly more cases of cutaneous irritation and hematomas among ET patients. ET have demonstrated significant efficacy in accelerating wound healing in diabetic patients, surpassing traditional methods, with additional advantages in pain management and life quality. Due to the observed minor complications, however, caution is required.
Collapse
Affiliation(s)
- Chunfen Liao
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Mingjie Zhu
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Hongchen Ding
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yanli Li
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Qianshu Sun
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Xueqin Li
- Department of Endocrinology, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
15
|
Jian XC, Deng CL. [Research advances on the role of microRNA engineered exosomes in diabetic wounds]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:190-195. [PMID: 38418181 DOI: 10.3760/cma.j.cn501225-20230721-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Diabetic wounds are a common complication in patients with diabetes, which is difficult to treat. Current treatment methods for diabetic wounds include debridement, functional dressing coverage, negative pressure therapy, bone cement filling, and skin grafting, etc. MicroRNA (miRNA) engineered exosomes have shown promising potential in diabetic wound repair due to the ability to alleviate inflammation, stimulate angiogenesis, and promote collagen deposition and re-epithelialization. Related researches are being actively carred out. This paper reviews the pathophysiological characteristics of diabetic wounds, the characteristics of miRNA and exosomes, the engineering methods for exosomes loaded with miRNA, and the mechanism of miRNA engineered exosomes in promoting healing of diabetic wounds, aiming to provide a reference basis for the future clinical application of miRNA engineered exosomes in diabetic wounds.
Collapse
Affiliation(s)
- X C Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - C L Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
16
|
Kowalczyk A, Twarowski B, Fecka I, Tuberoso CIG, Jerković I. Thymol as a Component of Chitosan Systems-Several New Applications in Medicine: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:362. [PMID: 38337895 PMCID: PMC10856996 DOI: 10.3390/plants13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Thymol, a plant-derived monoterpene phenol known for its broad biological activity, has often been incorporated into chitosan-based biomaterials to enhance therapeutic efficacy. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we conducted a systematic literature review from 2018 to 2023, focusing on the biomedical implications of thymol-loaded chitosan systems. A review of databases, including PubMed, Scopus, and Web of Science was conducted using specific keywords and search criteria. Of the 90 articles, 12 were selected for the review. Thymol-loaded chitosan-based nanogels (TLCBS) showed improved antimicrobial properties, especially against multidrug-resistant bacterial antagonists. Innovations such as bipolymer nanocarriers and thymol impregnated with photosensitive chitosan micelles offer advanced bactericidal strategies and show potential for bone tissue regeneration and wound healing. The incorporation of thymol also improved drug delivery efficiency and biomechanical strength, especially when combined with poly(dimethylsiloxane) in chitosan-gelatin films. Thymol-chitosan combinations have also shown promising applications in oral delivery and periodontal treatment. This review highlights the synergy between thymol and chitosan in these products, which greatly enhances their therapeutic efficacy and highlights the novel use of essential oil components. It also highlights the novelty of the studies conducted, as well as their limitations and possible directions for the development of integrated substances of plant and animal origin in modern and advanced medical applications.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.T.); (I.F.)
| | - Bartosz Twarowski
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.T.); (I.F.)
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (B.T.); (I.F.)
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy;
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia
| |
Collapse
|
17
|
Patenall BL, Carter KA, Ramsey MR. Kick-Starting Wound Healing: A Review of Pro-Healing Drugs. Int J Mol Sci 2024; 25:1304. [PMID: 38279304 PMCID: PMC10816820 DOI: 10.3390/ijms25021304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Cutaneous wound healing consists of four stages: hemostasis, inflammation, proliferation/repair, and remodeling. While healthy wounds normally heal in four to six weeks, a variety of underlying medical conditions can impair the progression through the stages of wound healing, resulting in the development of chronic, non-healing wounds. Great progress has been made in developing wound dressings and improving surgical techniques, yet challenges remain in finding effective therapeutics that directly promote healing. This review examines the current understanding of the pro-healing effects of targeted pharmaceuticals, re-purposed drugs, natural products, and cell-based therapies on the various cell types present in normal and chronic wounds. Overall, despite several promising studies, there remains only one therapeutic approved by the United States Food and Drug Administration (FDA), Becaplermin, shown to significantly improve wound closure in the clinic. This highlights the need for new approaches aimed at understanding and targeting the underlying mechanisms impeding wound closure and moving the field from the management of chronic wounds towards resolving wounds.
Collapse
Affiliation(s)
| | | | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (K.A.C.)
| |
Collapse
|