1
|
Yadalam PK, Ardila CM. Enhanced hierarchical attention networks for predictive interactome analysis of LncRNA and CircRNA in oral herpes virus. J Oral Biol Craniofac Res 2025; 15:445-453. [PMID: 40144645 PMCID: PMC11938150 DOI: 10.1016/j.jobcr.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Non-coding RNAs, including lncRNAs, circRNAs, and microRNAs, constitute 98 % of the human transcriptome and are vital regulators of gene expression, cellular processes, and host-pathogen interactions, particularly in viral infections. This study explores lncRNA-circRNA interactions and their biological significance in oral viral infections. METHODS ViRBase, a database with over 820,000 interactions involving 50,000 RNAs from 116 viruses and 36 host organisms, was used to analyze herpesvirus datasets. The study employed hierarchical attention and knowledge graph embeddings to represent nodes and edges in the knowledge graph. These served as input features for a hierarchical attention model trained over 100 epochs. Model performance was evaluated based on loss calculation, optimization, and attention weight stability. RESULTS The model achieved a final loss of 0.000180 at Epoch 100, with stable attention weights confirming reliability. Node embedding statistics showed a mean of 0.005110 and a standard deviation of 0.013370, while attention weights had a high mean of 0.997178, emphasizing model robustness. CONCLUSION This study provides insights into lncRNA-circRNA interactions in herpes viral infections, enhancing therapeutic development, disease progression monitoring, and understanding host-pathogen interactions, paving the way for targeted interventions and improved outcomes.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India
| | - Carlos M. Ardila
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha. University, Chennai, Tamil Nadu, India
- Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia
| |
Collapse
|
2
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
3
|
DeSouza NR, Nielsen KJ, Jarboe T, Carnazza M, Quaranto D, Kopec K, Suriano R, Islam HK, Tiwari RK, Geliebter J. Dysregulated Expression Patterns of Circular RNAs in Cancer: Uncovering Molecular Mechanisms and Biomarker Potential. Biomolecules 2024; 14:384. [PMID: 38672402 PMCID: PMC11048371 DOI: 10.3390/biom14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Circular RNAs (circRNAs) are stable, enclosed, non-coding RNA molecules with dynamic regulatory propensity. Their biogenesis involves a back-splicing process, forming a highly stable and operational RNA molecule. Dysregulated circRNA expression can drive carcinogenic and tumorigenic transformation through the orchestration of epigenetic modifications via extensive RNA and protein-binding domains. These multi-ranged functional capabilities have unveiled extensive identification of previously unknown molecular and cellular patterns of cancer cells. Reliable circRNA expression patterns can aid in early disease detection and provide criteria for genome-specific personalized medicine. Studies described in this review have revealed the novelty of circRNAs and their biological ss as prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kate J. Nielsen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kaci Kopec
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Robert Suriano
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Division of Natural Sciences, University of Mount Saint Vincent, Bronx, NY 10471, USA
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
4
|
Irani K, Siampour H, Allahverdi A, Moshaii A, Naderi-Manesh H. Lung Cancer Cell-Derived Exosome Detection Using Electrochemical Approach towards Early Cancer Screening. Int J Mol Sci 2023; 24:17225. [PMID: 38139054 PMCID: PMC10743818 DOI: 10.3390/ijms242417225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is one of the deadliest cancers worldwide due to the inability of existing methods for early diagnosis. Tumor-derived exosomes are nano-scale vesicles released from tumor cells to the extracellular environment, and their investigation can be very useful in both biomarkers for early cancer screening and treatment assessment. This research detected the exosomes via an ultrasensitive electrochemical biosensor containing gold nano-islands (Au-NIs) structures. This way, a high surface-area-to-volume ratio of nanostructures was embellished on the FTO electrodes to increase the chance of immobilizing the CD-151 antibody. In this way, a layer of gold was first deposited on the electrode by physical vapor deposition (PVD), followed by thermal annealing to construct primary gold seeds on the surface of the electrode. Then, gold seeds were grown by electrochemical deposition through gold salt. The cell-derived exosomes were successfully immobilized on the FTO electrode through the CD-151 antibody, and cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods were used in this research. In the CV method, the change in the current passing through the working electrode is measured so that the connection of exosomes causes the current to decrease. In the EIS method, surface resistance changes were investigated so that the binding of exosomes increased the surface resistance. Various concentrations of exosomes in both cell culture and blood serum samples were measured to test the sensitivity of the biosensor, which makes our biosensor capable of detecting 20 exosomes per milliliter.
Collapse
Affiliation(s)
- Koosha Irani
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-154, Iran; (K.I.); (H.N.-M.)
| | - Hossein Siampour
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan P.O. Box 81746-73461, Iran;
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-154, Iran; (K.I.); (H.N.-M.)
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran;
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-154, Iran; (K.I.); (H.N.-M.)
| |
Collapse
|