1
|
Gaibani P, Mazzariol A, Secci B, Diani E, Gibellini D. Genomic characterization of a high pathogenic Escherichia coli causing bacterial meningitis in a newborn in Italy, 2022: E. coli neonatal meningitis. Diagn Microbiol Infect Dis 2024; 110:116397. [PMID: 39126826 DOI: 10.1016/j.diagmicrobio.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 08/12/2024]
Abstract
Here, we characterize the complete genome sequence of Escherichia coli isolated from a newborn affected by bacterial meningitis in Italy. Genome of E. coli strain 1455 harbored a circular chromosome and two plasmids of 167.740-bp and 4.073-bp in length, respectively. E. coli 1455 belonged to the ST3, serotype O17:H18 and carried different determinants including resistance to B-lactams, tetracyclines, and quinolones. In addition, genome of E. coli strain 1455 harbored 5 integrated pro-phage regions mainly located in the chromosome, while most of the virulence factors associated to the invasiveness and clinical severity and different antimicrobial resistance determinants (blaTEM-1, tet(A) and qnrS1) were located in the 167-Kb plasmid. Taken together, our findings suggest a possible widespread of a virulence factors-carrying plasmid worldwide and highlight the importance of genomic characterization in the diffusion of public health threats.
Collapse
Affiliation(s)
- Paolo Gaibani
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, Verona, Italy.
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, Verona, Italy
| | | | - Erica Diani
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, Verona, Italy
| | - Davide Gibellini
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, Verona, Italy
| |
Collapse
|
2
|
Goya-Jorge E, Gonza I, Bondue P, Druart G, Al-Chihab M, Boutaleb S, Douny C, Taminiau B, Daube G, Scippo ML, Thonart P, Delcenserie V. Unveiling the influence of a probiotic combination of Heyndrickxia coagulans and Lacticaseibacillus casei on healthy human gut microbiota using the TripleSHIME® system. Microbiol Res 2024; 285:127778. [PMID: 38823185 DOI: 10.1016/j.micres.2024.127778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Probiotics are host-friendly microorganisms that can have important health benefits in the human gut microbiota as dietary supplements. Maintaining a healthy gut microbial balance relies on the intricate interplay among the intestinal microbiota, metabolic activities, and the host's immune response. This study aims to explore if a mixture of Heyndrickxia coagulans [ATB-BCS-042] and Lacticaseibacillus casei [THT-030-401] promotes in vitro this balance in representative gut microbiota from healthy individuals using the Triple-SHIME® (Simulation of the Human Intestinal Microbial Ecosystem). Metataxonomic analysis of the intestinal microbes revealed that the probiotic mix was not causing important disruptions in the biodiversity or microbial composition of the three simulated microbiota. However, some targeted populations analyzed by qPCR were found to be disrupted at the end of the probiotic treatment or after one week of washout. Populations such as Cluster IV, Cluster XVIa, and Roseburia spp., were increased indicating a potential gut health-promoting butyrogenic effect of the probiotic supplementation. In two of the systems, bifidogenic effects were observed, while in the third, the treatment caused a decrease in bifidobacteria. For the health-detrimental biomarker Escherichia-Shigella, a mild decrease in all systems was observed in the proximal colon sections, but these genera were highly increased in the distal colon sections. By the end of the washout, Bacteroides-Prevotella was found consistently boosted, which could have inflammatory consequences in the intestinal context. Although the probiotics had minimal influence on most quantified metabolites, ammonia consistently decreased after one week of daily probiotic supplementation. In reporter gene assays, aryl hydrocarbon receptor (AhR) activation was favored by the metabolic output obtained from post-treatment periods. Exposure of a human intestinal cell model to fermentation supernatant obtained after probiotic supplementation induced a trend to decrease the mRNA expression of immunomodulatory cytokines (IL-6, IL-8). Overall, with some exceptions, a positive impact of H. coagulans and L. casei probiotic mix was observed in the three parallel experiments, despite inter-individual differences. This study might serve as an in vitro pipeline for the impact assessment of probiotic combinations on the human gut microbiota.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium; Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Pauline Bondue
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Germain Druart
- Lacto Research sprl., Rue Herman Meganck 21, Gembloux-les Isnes 5032, Belgium.
| | - Mohamed Al-Chihab
- Lacto Research sprl., Rue Herman Meganck 21, Gembloux-les Isnes 5032, Belgium.
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Bernard Taminiau
- Laboratory of Microbiology, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Georges Daube
- Laboratory of Microbiology, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| | - Philippe Thonart
- Lacto Research sprl., Rue Herman Meganck 21, Gembloux-les Isnes 5032, Belgium.
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, Liège 4000, Belgium.
| |
Collapse
|
3
|
Antoine C, Laforêt F, Fall A, Blasdel B, Delcenserie V, Thiry D. K1 capsule-dependent phage-driven evolution in Escherichia coli leading to phage resistance and biofilm production. J Appl Microbiol 2024; 135:lxae109. [PMID: 38688866 DOI: 10.1093/jambio/lxae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
AIMS Understanding bacterial phage resistance mechanisms has implications for developing phage-based therapies. This study aimed to explore the development of phage resistance in Escherichia coli K1 isolates' to K1-ULINTec4, a K1-dependent bacteriophage. METHODS AND RESULTS Resistant colonies were isolated from two different strains (APEC 45 and C5), both previously exposed to K1-ULINTec4. Genome analysis and several parameters were assessed, including growth capacity, phage adsorption, phenotypic impact at capsular level, biofilm production, and virulence in the in vivo Galleria mellonella larvae model. One out of the six resistant isolates exhibited a significantly slower growth rate, suggesting the presence of a resistance mechanism altering its fitness. Comparative genomic analysis revealed insertion sequences in the region 2 of the kps gene cluster involved in the capsule biosynthesis. In addition, an immunoassay targeting the K1 capsule showed a very low positive reaction compared to the control. Nevertheless, microscopic images of resistant strains revealed the presence of capsules with a clustered organization of bacterial cells and biofilm assessment showed an increased biofilm production compared to the sensitive strains. In the G. mellonella model, larvae infected with phage-resistant isolates showed better survival rates than larvae infected with phage-sensitive strains. CONCLUSIONS A phage resistance mechanism was identified at the genomic level and had a negative impact on the K1 capsule production. The resistant isolates showed an increased biofilm production and a decreased virulence in vivo.
Collapse
Affiliation(s)
- Céline Antoine
- Department of Infectious and Parasitic Diseases, Veterinary bacteriology, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - Fanny Laforêt
- Department of Infectious and Parasitic Diseases, Veterinary bacteriology, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | | | - Bob Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310 Noville-sur-Mehaigne, Belgium
| | - Véronique Delcenserie
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - Damien Thiry
- Department of Infectious and Parasitic Diseases, Veterinary bacteriology, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| |
Collapse
|
4
|
Sereme Y, Schrimp C, Faury H, Agapoff M, Lefebvre-Wloszczowski E, Chang Marchand Y, Ageron-Ardila E, Panafieu E, Blec F, Coureuil M, Frapy E, Tsatsaris V, Bonacorsi S, Skurnik D. A live attenuated vaccine to prevent severe neonatal Escherichia coli K1 infections. Nat Commun 2024; 15:3021. [PMID: 38589401 PMCID: PMC11001983 DOI: 10.1038/s41467-024-46775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Preterm birth is currently the leading cause of neonatal morbidity and mortality. Genetic, immunological and infectious causes are suspected. Preterm infants have a higher risk of severe bacterial neonatal infections, most of which are caused by Escherichia coli an in particular E. coli K1strains. Women with history of preterm delivery have a high risk of recurrence and therefore constitute a target population for the development of vaccine against E. coli neonatal infections. Here, we characterize the immunological, microbiological and protective properties of a live attenuated vaccine candidate in adult female mice and their pups against after a challenge by K1 and non-K1 strains of E. coli. Our results show that the E. coli K1 E11 ∆aroA vaccine induces strong immunity, driven by polyclonal bactericidal antibodies. In our model of meningitis, mothers immunized prior to mating transfer maternal antibodies to pups, which protect newborn mice against various K1 and non-K1 strains of E. coli. Given the very high mortality rate and the neurological sequalae associated with neonatal E. coli K1 meningitis, our results constitute preclinical proof of concept for the development of a live attenuated vaccine against severe E. coli infections in women at risk of preterm delivery.
Collapse
Affiliation(s)
- Youssouf Sereme
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
| | - Cécile Schrimp
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
| | - Helène Faury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
- Department of Microbiology, Necker Hospital, University de Paris, Paris, France
| | - Maeva Agapoff
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
| | | | | | | | - Emilie Panafieu
- LEAT antenne Imagine- SFR Necker INSERM US 24, Paris, France
| | - Frank Blec
- LEAT antenne Imagine- SFR Necker INSERM US 24, Paris, France
| | - Mathieu Coureuil
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
| | - Eric Frapy
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
| | - Vassilis Tsatsaris
- Maternité Port-Royal, hôpital Cochin, GHU Centre Paris cité, AP-HP, Paris, France
- FHU PREMA, Maternité Port-Royal, Paris, France
| | - Stephane Bonacorsi
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP, Paris, France
| | - David Skurnik
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France.
- Department of Microbiology, Necker Hospital, University de Paris, Paris, France.
- FHU PREMA, Maternité Port-Royal, Paris, France.
| |
Collapse
|