1
|
Njoku GC, Forkan CP, Soltysik FM, Nejsum PL, Pociot F, Yarani R. Unleashing the potential of extracellular vesicles for ulcerative colitis and Crohn's disease therapy. Bioact Mater 2025; 45:41-57. [PMID: 39610953 PMCID: PMC11602541 DOI: 10.1016/j.bioactmat.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- George Chigozie Njoku
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, USA
| | - Cathal Patrick Forkan
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Pharmacy, Université Grenoble Alpes, France
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peter Lindberg Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
2
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application. Vaccines (Basel) 2024; 12:1282. [PMID: 39591185 PMCID: PMC11599128 DOI: 10.3390/vaccines12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Milk-derived extracellular vesicles (mEVs) are emerging as promising therapeutic candidates due to their unique properties and versatile functions. These vesicles play a crucial role in immunomodulation by influencing macrophage differentiation and cytokine production, potentially aiding in the treatment of conditions such as bone loss, fibrosis, and cancer. mEVs also have the capacity to modulate gut microbiota composition, which may alleviate the symptoms of inflammatory bowel diseases and promote intestinal barrier integrity. Their potential as drug delivery vehicles is significant, enhancing the stability, solubility, and bioavailability of anticancer agents while supporting wound healing and reducing inflammation. Additionally, bovine mEVs exhibit anti-aging properties and protect skin cells from UV damage. As vaccine platforms, mEVs offer advantages including biocompatibility, antigen protection, and the ability to elicit robust immune responses through targeted delivery to specific immune cells. Despite these promising applications, challenges persist, including their complex roles in cancer, effective antigen loading, regulatory hurdles, and the need for standardized production methods. Achieving high targeting specificity and understanding the long-term effects of mEV-based therapies are essential for clinical translation. Ongoing research aims to optimize mEV production methods, enhance targeting capabilities, and conduct rigorous preclinical and clinical studies. By addressing these challenges, mEVs hold the potential to revolutionize vaccine development and targeted drug delivery, ultimately improving therapeutic outcomes across various medical fields.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
3
|
Jing Q, Liu X, Lv Z, Xue D. IL27 and IL1RN are causally associated with acute pancreatitis: a Mendelian randomization study. Aging (Albany NY) 2024; 16:8572-8584. [PMID: 38742942 PMCID: PMC11164491 DOI: 10.18632/aging.205825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The interleukin (IL) plays a role in the development of acute pancreatitis (AP). However, the specific IL in AP has not been fully revealed. Therefore, the association between prospective IL and AP was studied via Mendelian randomization (MR). METHODS The HUGO Gene nomenclature committee (HGNC) database provided 47 interleukin related genes (ILRGs). ILRGs and differentially expressed genes (DEGs) from GSE194331 were overlapped to create differently expressed ILRGs (DE-ILRGs). The integrative epidemiology unit (IEU) open genome-wide association study (GWAS) database provided exposure and outcome datasets. Univariate MR (UVMR) analysis using MR-Egger, IVW, simple mode, and weighted mode was done. UVMR results were verified using sensitivity analysis. Drug prediction, MVMR analysis, and PPI network development were also performed. RESULTS Six DE-ILRGs were obtained. IL27 and IL1RN were substantially causally linked with AP by UVMR analysis (OR = 0.926, P < 0.001 and OR = 1.031, P = 0.023). Our sensitivity analysis showed the dependability of our results. Direct effect of IL27 was suggested by MVMR analysis. In the cytokine receptor binding pathway, IL27 and IL1RN interacted with IL36G and IL1R2. TAE-684, ARQ-680, and 12 other IL1RN and 14 IL27 medications were predicted. CONCLUSIONS IL1RN was identified as a risk factor for acute pancreatitis (AP), but IL27 was found to be a protective factor for AP.
Collapse
Affiliation(s)
- Qingxu Jing
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhenyi Lv
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical, University, Harbin 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
4
|
Meng Y, Sun J, Zhang G. Harnessing the power of goat milk-derived extracellular vesicles for medical breakthroughs: A review. Int J Biol Macromol 2024; 262:130044. [PMID: 38340922 DOI: 10.1016/j.ijbiomac.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
5
|
桂 建, 孙 晓, 温 舒, 刘 欣, 覃 冰, 桑 明. [Resveratrol protects dopaminergic neurons in a mouse model of Parkinson's disease by regulating the gut-brain axis via inhibiting the TLR4 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:270-279. [PMID: 38501412 PMCID: PMC10954533 DOI: 10.12122/j.issn.1673-4254.2024.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the protective effect of resveratrol on intestinal barrier in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse models and its mechanism for regulating TLR4/MyD88/NF-κB signaling to protect dopaminergic neurons. METHODS Fifty-two C57BL/6J mice were randomized into control group (n= 12), MPTP group (n=14), MPTP + resveratrol (30 mg/kg) group (n=13), and MPTP + resveratrol (90 mg/kg) group (n=13), and mouse models were established by intraperitoneal MPTP (30 mg/kg) injection for 7 days in the latter 3 groups. Behavioral tests were conducted to evaluate the effect of resveratrol on motor symptoms of the mice. Western blotting was used to detect the expression of TH, α-syn, ZO-1, Claudin-1, TLR4, MyD88, and NF-κB in the brain tissues of the mice. Immunohistochemistry, immunofluorescence, ELISA and transmission electron microscopy were used to verify the effect of resveratrol for suppressing inflammation and protecting the intestinal barrier. RESULTS Compared with those in the normal control group, the mice in MPTP group showed significant changes in motor function, number of dopaminergic neurons, neuroinflammation, levels of LPS and LBP, and expressions of tight junction proteins in the intestinal barrier. Resveratrol treatment significantly improved motor function of the PD mice (P < 0.01), increased the number of neurons and TH protein expression (P < 0.05), down-regulated the expressions of GFAP, Iba-1, and TLR4, lowered fecal and plasma levels of LPS and LBP (P < 0.05), restored the expression levels of ZO-1 and Claudin-1 (P < 0.01), and down-regulated the expressions of TLR4, MyD88, and NF-κB in the colon tissue (P < 0.05). The mice with resveratrol treatment at 30 mg/kg showed normal morphology of the tight junction complex with neatly and tightly arranged intestinal villi. CONCLUSION Resveratrol repairs the intestinal barrier by inhibiting TLR4/MyD88/NF-κB signaling pathway-mediated inflammatory response, thereby improving motor function and neuropathy in mouse models of MPTP-induced PD.
Collapse
Affiliation(s)
- 建军 桂
- 湖北医药学院基础医学院,湖北 十堰 442000School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
- 湖北医药学院附属襄阳市第一人民医院转化医学中心,湖北 襄阳 441000Translational Medicine Center, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- 湖北省帕金森病临床医学研究中心,湖北 襄阳 441000Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang 441000, China
- 武当特色中药研究湖北省重点实验室,湖北 十堰 442000Hubei Provincial Key Laboratory of Wudang Traditional Chinese Medicine Research, Shiyan 442000, China
| | - 晓东 孙
- 湖北医药学院基础医学院,湖北 十堰 442000School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
- 湖北医药学院附属襄阳市第一人民医院转化医学中心,湖北 襄阳 441000Translational Medicine Center, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- 湖北省帕金森病临床医学研究中心,湖北 襄阳 441000Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang 441000, China
- 武当特色中药研究湖北省重点实验室,湖北 十堰 442000Hubei Provincial Key Laboratory of Wudang Traditional Chinese Medicine Research, Shiyan 442000, China
| | - 舒 温
- 湖北医药学院附属襄阳市第一人民医院转化医学中心,湖北 襄阳 441000Translational Medicine Center, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - 欣 刘
- 湖北医药学院基础医学院,湖北 十堰 442000School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - 冰清 覃
- 湖北医药学院附属襄阳市第一人民医院转化医学中心,湖北 襄阳 441000Translational Medicine Center, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- 湖北省帕金森病临床医学研究中心,湖北 襄阳 441000Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang 441000, China
| | - 明 桑
- 湖北医药学院基础医学院,湖北 十堰 442000School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
- 湖北医药学院附属襄阳市第一人民医院转化医学中心,湖北 襄阳 441000Translational Medicine Center, Xiangyang First People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
- 湖北省帕金森病临床医学研究中心,湖北 襄阳 441000Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang 441000, China
- 武当特色中药研究湖北省重点实验室,湖北 十堰 442000Hubei Provincial Key Laboratory of Wudang Traditional Chinese Medicine Research, Shiyan 442000, China
| |
Collapse
|
6
|
Ferlisi F, De Ciucis CG, Trabalza-Marinucci M, Fruscione F, Mecocci S, Franzoni G, Zinellu S, Galarini R, Razzuoli E, Cappelli K. Olive Mill Waste-Water Extract Enriched in Hydroxytyrosol and Tyrosol Modulates Host-Pathogen Interaction in IPEC-J2 Cells. Animals (Basel) 2024; 14:564. [PMID: 38396532 PMCID: PMC10886184 DOI: 10.3390/ani14040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The dietary supplementation of olive oil by-products, including olive mill waste-water (OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and the occurrence of intestinal diseases. Salmonella serovar typhimurium is one of the most widespread intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune response of an intestinal porcine epithelial cell line (IPEC-J2) following S. typhimurium infection. Cells were pre-treated with OMWW-extract polyphenols (OMWW-EP, 0.35 and 1.4 µg) for 24 h and then infected with S. typhimurium for 1 h. We evaluated bacterial invasiveness and assayed IPEC-J2 gene expression with RT-qPCR and cytokine release with an ELISA test. The obtained results showed that OMWW-EP (1.4 µg) significantly reduced S. typhimurium invasiveness; 0.35 µg decreased the IPEC-J2 gene expression of IL1B, MYD88, DEFB1 and DEFB4A, while 1.4 µg down-regulated IL1B and DEFB4A and increased TGFB1. The cytokine content was unchanged in infected cells. This is the first study demonstrating the in vitro immunomodulatory and antimicrobial activity of OMWW extracts enriched in polyphenols, suggesting a protective role of OMWW polyphenols on the pig intestine and their potential application as feed supplements in farm animals such as pigs.
Collapse
Affiliation(s)
- Flavia Ferlisi
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | | | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.F.); (S.Z.)
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (G.F.); (S.Z.)
| | - Roberta Galarini
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy;
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genova, Italy; (C.G.D.C.); (F.F.); (E.R.)
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 01623 Perugia, Italy; (F.F.); (S.M.); (K.C.)
| |
Collapse
|
7
|
Li Y, Qian Y, Wang N, Qiu D, Cao H, Wang Y, Luo H, Shen X, Cui H, Wang J, Zhu H. The functions and applications of extracellular vesicles derived from Mycobacterium tuberculosis. Biomed Pharmacother 2023; 168:115767. [PMID: 37865994 DOI: 10.1016/j.biopha.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) originating from bacteria function critical roles in bacterial biologic physiology and host-pathogen interactions. Mycobacterium tuberculosis (M. tuberculosis) produces EVs both in vitro and in vivo, with membrane-bound nanoparticles facilitating the transmission of biological molecules including lipids, proteins, nucleic acids and glycolipids, while interacting remotely with the host. Although studies of EVs in mycobacterial infections is still in its infancy, it has already revealed an entirely new aspect of M. tuberculosis-host interactions that may have implications for tuberculosis (TB) pathogenesis. In this review, we discuss the significant functions of M. tuberculosis EVs in elucidating the mechanisms underlying vesicle biogenesis and modulating cellular immune responses, as well as the recent advances and challenges in the development of novel preventive and therapeutic or diagnostic strategies against TB.
Collapse
Affiliation(s)
- Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Yingfen Qian
- Department of Clinical Laboratory, The Fourth People's Hospital of Kunshan, Suzhou, Jiangsu 215300, PR China
| | - Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child health hospital Maternal and Child heath hospital of Nanchang college, Nanchang 215300, PR China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, PR China
| | - Yihua Wang
- Department of Clinical Laboratory, Kunshan Jinxi People's Hospital, Suzhou 215300, PR China
| | - Hao Luo
- Department of Clinical Laboratory, Kunshan Second People's Hospital, Suzhou 215300, PR China
| | - Xiaodong Shen
- Penglang Community Health Service Center of Kunshan Economic and Technological Development Zone, Suzhou 215300, PR China
| | - Hanwei Cui
- Department of Central Laboratory, The Fourth People's Hospital of Shenzhen, Shenzhen 518118, PR China.
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China.
| | - Hong Zhu
- Department of Clinical Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, PR China.
| |
Collapse
|