1
|
Eid AH, S Zaki E, Sabry MO, El-Shiekh RA, Khalaf SS. Exploring the anti-anaphylaxis potential of natural products: A Review. Inflammopharmacology 2025:10.1007/s10787-025-01685-2. [PMID: 40106030 DOI: 10.1007/s10787-025-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Allergies are a common health issue affecting many people around the world, especially in developed countries. They occur when the immune system overreacts to substances that are usually harmless. Some common allergic conditions include asthma, sinus infections, skin rashes, food allergies, hay fever, severe allergic reactions, eczema, swelling, and reactions to medications or insect stings. The causes of these allergies are complex and often linked to genetics, which can lead to heightened immune responses known as atopy. Throughout history, plant extracts have been used for various purposes, including medicine and food. In addition, their bioactive compounds show a wide range of beneficial effects, such as reducing allergic reactions, fighting oxidative stress, mast cell stabilizers, and lowering inflammation, highlighting their potential for treating various health conditions. Flavonoids and phenolic compounds are commonly used in anaphylaxis for their potent anti-inflammatory action. This review aims to promote the use of natural products as potential treatments for anaphylaxis. In addition, the discovery of new drugs derived from natural sources holds significant promise for the management of anaphylaxis.
Collapse
Affiliation(s)
- Aya H Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Eman S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Miral O Sabry
- Faculty of Science, National University of Singapore, Singapore, Singapore
- Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Samar S Khalaf
- Biochemistry Department Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
2
|
He Y, Liang Y, Fan M, Zhang J, Miao Q. Jieyu Guben decoction alleviates combined allergic rhinitis and asthma syndrome by balancing Th17/Treg expression and restoring PPARD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156508. [PMID: 40031093 DOI: 10.1016/j.phymed.2025.156508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND This study was designed to assess the efficacy of the Jieyu Guben Decoction (JYGBD), a novel formula that has not been reported, in treating rats with combined allergic rhinitis and asthma syndrome (CARAS) and the mechanism. METHODS CARAS rats were induced by ovalbumin (OVA) sensitization and treated with JYGBD to analyze the allergic symptoms and the production of OVA-specific antibodies. Hematoxylin-eosin staining, periodic acid-Schiff staining, Toluidine blue staining, Giemsa staining, and MASSON staining were applied to examine the impact of JYGBD treatment on the histopathological damage of nasal mucosa and lungs. Targets of JYGBD were predicted, and the impact of JYGBD on T helper 17 (Th17) inflammation was analyzed. Peroxisome proliferator-activated receptor delta (PPARD) was artificially silenced to assess the effects of PPARD deficiency on Th17 inflammation. The regulation of PPARD on methyl-CpG-binding protein 2 (MECP2) was analyzed as well. RESULTS JYGBD alleviated allergic conditions in rats and inhibited inflammatory cell infiltration and damage in nasal mucosa and lung tissues. The molecular targets of JYGBD were related to Th17 differentiation, and JYGBD alleviated Th17 inflammation in CARAS rats and inhibited Th17 differentiation in vitro. PPARD-mediated transcriptional inhibition of MECP2 blocked signal transducer and activator of transcription 3 (STAT3) activation to alleviate Th17/regulatory T cells (Treg) imbalance. MECP2 deletion and inhibition of STAT3 signaling alleviated PPARD knockdown-induced Th17/Treg imbalance and attenuated CARAS in rats. CONCLUSION JYGBD induces PPARD-mediated transcriptional inhibition of MECP2 to block STAT3 signaling pathway activation, which restores Th17/Treg homeostasis to alleviate CARAS.
Collapse
Affiliation(s)
- Yi He
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yanxia Liang
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Maorong Fan
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China.
| | - Jinzhi Zhang
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qing Miao
- Department of Respiratory, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| |
Collapse
|
3
|
Jo H, Kim M, Jeoung J, Kim W, Park YH, Jung HS, Lee W, Jeoung D. Rocaglamide Suppresses Allergic Reactions by Regulating IL-4 Receptor Signaling. Molecules 2025; 30:840. [PMID: 40005151 PMCID: PMC11858170 DOI: 10.3390/molecules30040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Rocaglamide (Roc-A), a natural phytochemical isolated from Aglaia species, is known to exert anticancer effects. Allergic inflammation can enhance the tumorigenic potential of cancer cells. We hypothesized that Roc-A could regulate allergic inflammation. Roc-A prevented an antigen from increasing the hallmarks of allergic reactions in vitro. Roc-A suppressed passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). RNA sequencing analysis showed that Roc-A prevented the antigen from increasing the expression of IL-4 in RBL2H3 cells. Roc-A also prevented the antigen from increasing the expression of interleukin-4 receptor (IL-4R). Roc-A was found to form a hydrogen-bonding network with residues N92 and L64 of IL-4R in a molecular docking simulation. Roc-A prevented the antigen from inducing the binding of IL-4R to JAK1. Chromatin immunoprecipitation (ChIP) assays showed that C-Jun could bind to promoter sequences of IL-4 and IL-4R. Mouse recombinant IL-4 protein increased β-hexosaminidase activity, IL-4R expression, and the hallmarks of allergic inflammation in the antigen-independent manner. Mouse recombinant IL-4 protein increased the expressions of CD163 and arghinase-1 and markers of M2 macrophages, but decreased the expression of iNOS, a marker of M1 macrophages in lung macrophages. Roc-A regulated the effects of a culture medium of antigen-stimulated RBL2H3 cells on the expressions of iNOS and arginase-1 in RAW264.7 macrophages. The blocking of IL-4 or downregulation of IL-4R exerted negative effects on the hallmarks of allergic reactions in vitro. The blocking of IL-4 or downregulation of IL-4R also exerted negative effects on PCA, and the downregulation of IL-4R exerted negative effects on PSA. An miR-34a mimic exerted negative effects on allergic reactions in vitro. The downregulation of IL-4R prevented the antigen from decreasing the expression of miR-34a in RBL2H3 cells. We identified chemicals that could bind to IL-4R via molecular docking analysis. The IL-4R docking chemical 1536801 prevented the antigen from increasing β-hexosaminidase activity and the hallmarks of allergic reactions. The IL-4R docking chemical 1536801 also exerted a negative effect on PCA. TargetScan analysis predicted miR-34a as a negative regulator of IL-4R. We found that the anti-allergic effect of Roc-A and its mechanisms were associated with miR-34a. Taken together, our results show that understanding IL-4R-mediated allergic reactions can provide clues for the development of anti-allergy therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.); (M.K.); (J.J.); (W.K.); (H.S.J.); (W.L.)
| |
Collapse
|
4
|
Huang X, Qian X, Gao B, Dong W, Yang M, Liu D, Zuo Z, Liang X. The protective effects and mechanisms of essential oil from Chimonanthus nitens Oliv. leaves in allergic rhinitis based on the NF-κB and T-bet/GATA-3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118908. [PMID: 39401663 DOI: 10.1016/j.jep.2024.118908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Preliminary studies showed that Shanlameiye granules are derived from Chimonanthus nitens Oliv. Leaves ameliorate inflammatory responses in mice with Allergic Rhinitis (AR). The essential oil from Chimonanthus nitens Oliv. Leaves (CLO) have been identified as the key active substances in these granules. However, whether CLO constitutes the primary mechanism for the mitigation of AR-related inflammation by these granules has not yet been investigated. AIM OF THE STUDY This experiment was to validate the effects and mechanism of CLO on inflammatory responses in RAW264.7 cells and AR rat model. MATERIALS AND METHODS An inflammatory model was induced in RAW264.7 cells by Lipopolysaccharide (LPS) & Interferon-gamma (IFN-γ) stimulation. AR rat model was established using both systemic and local challenges with Ovalbumin (OVA). RESULTS In cell experiments, CLO obviously decreased the secretion of cytokines and inhibited the NF-κB signaling pathway activation. In animal experiments, CLO decreased the number of eosinophils in the blood and lowered the levels of cytokines in nasal lavage fluid (NALF). Additionally, CLO inhibited the expression of STAT6, GATA-3, and p-p65, while increasing the expression of STAT4 and T-bet in the nasal mucosa. CONCLUSION In AR rat model, CLO may play an anti-inflammatory role in AR rat model by regulating NF-κB and T-bet/GATA-3 signaling pathways.
Collapse
Affiliation(s)
- Xiaoying Huang
- Jiangxi University of Chinese Medicine, Jiangxi, China; Jiangxi Guxiang Jinyun Great Health Industry Co., Ltd., Jiangxi, China
| | - Xingyi Qian
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Beibei Gao
- Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Wei Dong
- Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Ming Yang
- Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Duanyong Liu
- Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Zhengyun Zuo
- Jiangxi University of Chinese Medicine, Jiangxi, China.
| | - Xinli Liang
- Jiangxi University of Chinese Medicine, Jiangxi, China; Key Laboratory for the Modernization of Classical and Famous Prescriptions, Jiangxi University of Chinese Medicine, Jiangxi, China.
| |
Collapse
|
5
|
Gu S, Wang R, Zhang W, Wen C, Chen C, Liu S, Lei Q, Zhang P, Zeng S. The production, function, and clinical applications of IL-33 in type 2 inflammation-related respiratory diseases. Front Immunol 2024; 15:1436437. [PMID: 39301028 PMCID: PMC11410612 DOI: 10.3389/fimmu.2024.1436437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Epithelial-derived IL-33 (Interleukin-33), as a member of alarm signals, is a chemical substance produced under harmful stimuli that can promote innate immunity and activate adaptive immune responses. Type 2 inflammation refers to inflammation primarily mediated by Type 2 helper T cells (Th2), Type 2 innate lymphoid cells (ILC2), and related cytokines. Type 2 inflammation manifests in various forms in the lungs, with diseases such as asthma and chronic obstructive pulmonary disease chronic obstructive pulmonary disease (COPD) closely associated with Type 2 inflammation. Recent research suggests that IL-33 has a promoting effect on Type 2 inflammation in the lungs and can be regarded as an alarm signal for Type 2 inflammation. This article provides an overview of the mechanisms and related targets of IL-33 in the development of lung diseases caused by Type 2 inflammation, and summarizes the associated treatment methods. Analyzing lung diseases from a new perspective through the alarm of Type 2 inflammation helps to gain a deeper understanding of the pathogenesis of these related lung diseases. This, in turn, facilitates a better understanding of the latest treatment methods and potential therapeutic targets for diseases, with the expectation that targeting lL-33 can propose new strategies for disease prevention.
Collapse
Affiliation(s)
- Shiyao Gu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruixuan Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wantian Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cen Wen
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Zeng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Farhan M, Rizvi A, Aatif M, Muteeb G, Khan K, Siddiqui FA. Dietary Polyphenols, Plant Metabolites, and Allergic Disorders: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:670. [PMID: 38931338 PMCID: PMC11207098 DOI: 10.3390/ph17060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Given the ongoing rise in the occurrence of allergic disorders, alterations in dietary patterns have been proposed as a possible factor contributing to the emergence and progression of these conditions. Currently, there is a significant focus on the development of dietary therapies that utilize natural compounds possessing anti-allergy properties. Dietary polyphenols and plant metabolites have been intensively researched due to their well-documented anti-inflammatory, antioxidant, and immunomodulatory characteristics, making them one of the most prominent natural bioactive chemicals. This study seeks to discuss the in-depth mechanisms by which these molecules may exert anti-allergic effects, namely through their capacity to diminish the allergenicity of proteins, modulate immune responses, and modify the composition of the gut microbiota. However, further investigation is required to fully understand these effects. This paper examines the existing evidence from experimental and clinical studies that supports the idea that different polyphenols, such as catechins, resveratrol, curcumin, quercetin, and others, can reduce allergic inflammation, relieve symptoms of food allergy, asthma, atopic dermatitis, and allergic rhinitis, and prevent the progression of the allergic immune response. In summary, dietary polyphenols and plant metabolites possess significant anti-allergic properties and can be utilized for developing both preventative and therapeutic strategies for targeting allergic conditions. The paper also discusses the constraints in investigating and broad usage of polyphenols, as well as potential avenues for future research.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Kimy Khan
- Department of Dermatology, Almoosa Specialist Hospital, Dhahran Road, Al Mubarraz 36342, Al Ahsa, Saudi Arabia;
| | - Farhan Asif Siddiqui
- Department of Laboratory and Blood Bank, King Fahad Hospital, Prince Salman Street, Hofuf 36441, Saudi Arabia;
| |
Collapse
|
7
|
Jin J, Nguyen TV, Jiang Y, Yu ZN, Song CH, Lee SY, Shin HS, Chai OH. Hydrangea serrata extract attenuates PM-exacerbated airway inflammation in the CARAS model by modulating the IL-33/ST2/NF-κB signaling pathway. Biomed Pharmacother 2024; 174:116596. [PMID: 38631146 DOI: 10.1016/j.biopha.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Particulate matter (PM) significantly contributes to the global health crisis of respiratory diseases. It is known to induce and exacerbate conditions such as asthma and respiratory infections. Long exposure to PM can increase the risk of combined allergic rhinitis and asthma syndrome (CARAS). Although therapeutic drugs can be used to improve symptoms of respiratory diseases caused by PM, their usage is often accompanied by side effects. Therefore, many studies are being conducted to discover functional food materials that can more effectively treat respiratory diseases while minimizing the side effects of these therapeutic drugs. This study was conducted to investigate the efficacy of Hydrangea serrata extract (HSE) in airway inflammation in a mouse model of CARAS exacerbated by PM. In the CARAS mouse model worsened by PM, the airway inflammation improvement effect of HSE was evaluated by analyzing allergic nasal symptoms, changes in inflammatory cells, OVA-specific immunoglobulin (Ig) levels, cytokines, mast cell activation, and histopathological findings of both nasal mucosa and lung tissue. HSE effectively reduced OVA-specific IgE and IgG1 and inhibited the production of T helper type 2 (Th2)-related cytokines such as IL-4 and IL-5. Importantly, HSE reduced IL-33 and ST2 expression and inhibited the activation of the NF-κB signaling pathway. In addition, HSE inhibited airway hypersensitivity, mucus production, and inflammatory cell infiltration. These results suggest that HSE may inhibit airway inflammation in CARAS/PM mice by regulating the IL-33/ST2/NF-κB signaling pathway, opening avenues for considering HSE as a potential material for treating allergic airway inflammation diseases in the future.
Collapse
Affiliation(s)
- Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| | - So-Young Lee
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea; Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, South Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea; Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, South Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea.
| |
Collapse
|
8
|
Adilis Maria Paiva Ferreira L, Karla Diega Paiva Ferreira L, Fragoso Pereira Cavalcanti R, Allysson de Assis Ferreira Gadelha F, Mangueira de Lima L, Francisco Alves A, Gabriel Lima Júnior C, Regina Piuvezam M. Morita-Baylis-Hillman adduct 2-(3-hydroxy-1-methyl-2-oxoindolin-3-il) acrylonitrile (CISACN) ameliorates the pulmonary allergic inflammation in CARAS model by increasing IFN-γ/IL-4 ratio towards the Th1 immune response. Int Immunopharmacol 2024; 130:111737. [PMID: 38401465 DOI: 10.1016/j.intimp.2024.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) is an airway-type 2 immune response with a profuse inflammatory process widely affecting the world population. Due to the compromise of quality of life and the lack of specific pharmacotherapy, the search for new molecules becomes relevant. This study aimed to evaluate the effectiveness of the Morita-Bailys-Hillman adduct (CISACN) treatment in the CARAS experimental model. Female BALB/c mice were ovalbumin (OVA) -sensitized and -challenged and treated with CISACN. The treatment decreased the eosinophil migration to the nasal and lung cavities and tissues and the goblet cell hyperplasia/hypertrophy, attenuated airway hyperactivity by reducing the hyperplasia/hypertrophy of the smooth muscle and the extracellular matrix's thickness. Also, the treatment reduced the clinical signs of rhinitis as nasal rubbing and sneezing in a histamine-induced nasal hyperreactivity assay. The immunomodulatory effect of CISACN was by reducing OVA-specific IgE serum level, and IL-33, IL-4, IL-13, and TGF-β production, dependent on IFN-γ increase. Furthermore, the effect of CISACN on lung granulocytes was by decreasing the p-p38MAPK/p65NF-κB signaling pathway. Indeed, CISACN reduced the p38MAPK and p65NF-κB activation. These data demonstrated the anti-inflammatory and immunomodulatory effects of the CISACN with scientific support to become a pharmacological tool to treat airway inflammatory diseases.
Collapse
Affiliation(s)
- Larissa Adilis Maria Paiva Ferreira
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Raquel Fragoso Pereira Cavalcanti
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Louise Mangueira de Lima
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marcia Regina Piuvezam
- Laboratory of Immunopharmacology, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil; Drug Research Institute of the Federal University of Paraíba, Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
9
|
Zhuo Z, Nie J, Xie B, Wang F, Shi M, Jiang Y, Zhu W. A comprehensive study of Ephedra sinica Stapf-Schisandra chinensis (Turcz.) Baill herb pair on airway protection in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117614. [PMID: 38113990 DOI: 10.1016/j.jep.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedra sinica Stapf (Mahuang) and Schisandra chinensis (Turcz.) Baill (Wuweizi) are commonly utilized in traditional Chinese medicine for the treatment of cough and asthma. The synergistic effect of Mahuang-Wuweizi herb pair enhances their efficacy in alleviating respiratory symptoms, making them extensively employed in the management of respiratory disorders. Although previous studies have demonstrated the therapeutic potential of Mahuang-Wuweizi in pulmonary fibrosis, the precise mechanism underlying their effectiveness against asthma remains elusive. AIM OF THE STUDY The objective of this study is to investigate the mechanism underlying the preventive and therapeutic effects of Mahuang-Wuweizi herb pair on asthma progression, focusing on airway inflammation and airway remodeling. MATERIALS AND METHODS The active constituents and potential mechanisms of Mahuang-Wuweizi in the management of asthma were elucidated through network pharmacology analysis. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to detect the main components of Mahuang-Wuweizi decoction. A rat model of bronchial asthma was established, and the effects of Mahuang-Wuweizi were investigated using hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), and real-time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The results of network pharmacological prediction showed that Mahuang had 22 active components and Wuweizi had 8 active components, with 225 potential targets. 1159 targets associated with asthma and 115 targets that overlap between drugs and diseases were identified. These include interleukin-6 (IL-6), tumor necrosis factor (TNF), Tumor Protein 53, interleukin-1β (IL-1β), as well as other essential targets. Additionally, there is a potential correlation between asthma and Phosphatidylinositol 3 kinase (PI3K)/Protein Kinase B (AKT) signaling pathway, calcium ion channels, nuclear factor-kappa B (NF-κB) signaling pathway, and other signaling pathways. The animal experiment results demonstrated that treatment with Mahuang and Wuweizi, in comparison to the model group, exhibited improvements in lung tissue pathological injury, reduction in collagen fiber accumulation around the airway and proliferation of airway smooth muscle, decrease in concentration levels of IL-6, TNF-α and IL-1β in lung tissue, as well as alleviation of airway inflammation. Furthermore, Mahuang and Wuweizi suppressed the expression of phospholipase C (PLC), transient receptor potential channel 1 (TRPC1), myosin light chain kinase (MLCK), NF-κB P65 protein in ovalbumin (OVA)-sensitized rat lung tissue and downregulated the mRNA expression of PLC, TRPC1, PI3K, AKT, NF-κB P65 in asthmatic rats. These findings were consistent with network pharmacological analysis. CONCLUSION The results show that the synergistic interaction between Mahuang and Wuweizi occur, and they can effectively reduce airway remodeling and airway inflammation induced by inhaling OVA in bronchial asthma rats by inhibiting the expression of PLC/TRPC1/PI3K/AKT/NF-κB signaling pathway. Therefore, Mahuang and Wuweizi may be potential drugs to treat asthma.
Collapse
Affiliation(s)
- Zushun Zhuo
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Jianhua Nie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Bin Xie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Fei Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Min Shi
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yini Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Weifeng Zhu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
10
|
Jin J, Fan YJ, Nguyen TV, Yu ZN, Song CH, Lee SY, Shin HS, Chai OH. Chaenomeles sinensis Extract Ameliorates Ovalbumin-Induced Allergic Rhinitis by Inhibiting the IL-33/ST2 Axis and Regulating Epithelial Cell Dysfunction. Foods 2024; 13:611. [PMID: 38397588 PMCID: PMC10888344 DOI: 10.3390/foods13040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Chaenomeles sinensis has traditionally been used as an herbal medicine due to its characteristics that protect against inflammation, hypertension, and mutagenesis. However, the effect of Chaenomeles sinensis extract (CSE) on allergic rhinitis (AR) and its underlying mechanisms have yet to be thoroughly investigated. The current study explored the likely effect of CSE on AR in an ovalbumin (OVA)-induced AR mouse model. To this end, OVA-specific immunoglobulins, nasal symptoms, cytokine production, the infiltration of inflammatory cells, and nasal histopathology were assessed to determine the role of CSE against AR. The supplementation of CSE was found to suppress OVA-specific IgE, while OVA-specific IgG2a was increased in the serum. Further, CSE ameliorated the production of T helper type 2 (Th2) cytokines whereas it increased Th1 cytokine levels in nasal lavage fluid. Moreover, the CSE treatment group exhibited significant inhibition of IL-33/ST2 signaling. Subsequently, CES reversed the OVA-induced enhancement of epithelial permeability and upregulated E-cadherin, thus indicating that CES plays a protective role on epithelial barrier integrity. Altogether, the oral administration of CSE effectively controlled allergic response by restricting the buildup of inflammatory cells, enhancing nasal and lung histopathological traits, and regulating cytokines associated with inflammation. Collectively, the results show that the supplementation of CSE at different doses effectively regulated AR, thus suggesting the therapeutic efficiency of CSE in suppressing airway diseases.
Collapse
Affiliation(s)
- Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - So-Young Lee
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.J.)
- Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| |
Collapse
|
11
|
Xu H, Wu C, Wang D, Wang H. Alleviating effect of Nexrutine on mucosal inflammation in mice with ulcerative colitis: Involvement of the RELA suppression. Immun Inflamm Dis 2024; 12:e1147. [PMID: 38270298 PMCID: PMC10797652 DOI: 10.1002/iid3.1147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Nexrutine is an herbal extract derived from Phellodendron amurense, known for its anti-inflammatory, antidiarrheal, and hemostatic properties. However, its effect on ulcerative colitis (UC) remains unclear. METHODS A mouse model of UC was induced by 3% dextran sulfate sodium, while human colonic epithelial cells NCM-460 were exposed to lipopolysaccharide. Both models were treated with Nexrutine at 300 or 600 mg/kg, with Mesalazine applied as a positive control regimen. The disease activity index (DAI) of mice was calculated, and the pathological injury scores were assessed through hematoxylin and eosin staining. The viability of NCM-460 cells was determined using the CCK-8 method. Inflammatory cytokines were detected using ELISA kits. Expression of mucin 3 (MUC3), Claudin-1, and tight junction protein (ZO-1) was detected to analyze mucosal barrier integrity. Target genes of Nexrutine were predicted using bioinformatics tools. Expression of RELA proto-oncogene (RELA) was analyzed using qPCR and western blot assays. RESULTS The Nexrutine treatments significantly alleviated DAI of mice, mitigated pathological changes in their colon tissues, decreased the production of pro-inflammatory cytokines, enhanced the barrier integrity-related proteins, and increased NCM-460 cell viability in vitro. RELA, identified as a target gene of Nexrutine, showed elevated levels in UC models but was substantially suppressed by Nexrutine treatment. Adenovirus-mediated RELA upregulation in mice or the overexpression plasmid of RELA in cells counteracted the effects of Nexrutine treatments, exacerbating UC-related symptoms. CONCLUSION This study demonstrates that Nexrutine alleviates inflammatory mucosal barrier damage in UC by suppressing RELA transcription.
Collapse
Affiliation(s)
- Hongyun Xu
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Chunyu Wu
- Department of Continuing EducationFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Danning Wang
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Haiqiang Wang
- Department of Liver, Spleen and StomachFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| |
Collapse
|
12
|
Dębińska A, Sozańska B. Dietary Polyphenols-Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023; 15:4823. [PMID: 38004216 PMCID: PMC10674996 DOI: 10.3390/nu15224823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In light of the constantly increasing prevalence of allergic diseases, changes in dietary patterns have been suggested as a plausible environmental explanation for the development and progression of these diseases. Nowadays, much attention has been paid to the development of dietary interventions using natural substances with anti-allergy activities. In this respect, dietary polyphenols have been studied extensively as one of the most prominent natural bioactive compounds with well-documented anti-inflammatory, antioxidant, and immunomodulatory properties. This review aims to discuss the mechanisms underlying the potential anti-allergic actions of polyphenols related to their ability to reduce protein allergenicity, regulate immune response, and gut microbiome modification; however, these issues need to be elucidated in detail. This paper reviews the current evidence from experimental and clinical studies confirming that various polyphenols such as quercetin, curcumin, resveratrol, catechins, and many others could attenuate allergic inflammation, alleviate the symptoms of food allergy, asthma, and allergic rhinitis, and prevent the development of allergic immune response. Conclusively, dietary polyphenols are endowed with great anti-allergic potential and therefore could be used either for preventive approaches or therapeutic interventions in relation to allergic diseases. Limitations in studying and widespread use of polyphenols as well as future research directions are also discussed.
Collapse
Affiliation(s)
- Anna Dębińska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wrocław Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland;
| | | |
Collapse
|