1
|
Kim Y, Jeong S, Park I, Moon HK. Revisiting Phryma leptostachya L.: phylogenetic relationships and biogeographical patterns from complete plastome. BMC PLANT BIOLOGY 2025; 25:278. [PMID: 40033209 DOI: 10.1186/s12870-025-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Phryma leptostachya L. is a notable example of a species with a disjunct distribution, found in both East Asia and Eastern North America. Despite the striking morphological similarities between these geographically isolated populations, molecular evidence suggests that they may have diverged sufficiently to be considered distinct taxa. RESULTS To clarify this, we analyzed the plastomes of P. leptostachya from Korea, Russia, and the USA. Their sizes ranged from 152,974 to 153,325 bp, each containing 113 genes. Differences were observed in the boundaries between large single copy (LSC)/IRa and IRb/LSC. In P. leptostachya_USA, the rps19 gene extended 30-31 bp into the IRa, and the rpl2 gene contracted 51-53 bp at the IRa/b compared to those of P. leptostachya_Korea and P. leptostachya_Russia, suggesting that expansion of the inverted repeat (IR) region occurred in P. leptostachya_USA. Regions such as psbZ-trnG, ccsA-ndhD, petA-psbJ, and psbC-trnS were identified as hotspots with sequence differences in the plastome, indicating differences among P. leptostachya variants. Phylogenetic analysis showed that P. leptostachya from Korea and Russia formed monophyletic groups, while the variety from the USA was paraphyletic. The divergence of P. leptostachya_USA occurred during the Pliocene, about 5.25 million years ago (MYA), whereas the split between P. leptostachya_Korea and P. leptostachya_Russia is estimated to have occurred approximately 0.87 MYA during the Pleistocene. The results also reveal that the family Phrymaceae underwent multiple dispersal and vicariance events from North America to East Asia, offering key insights into the phylogenetic relationships between P. leptostachya populations from Korea, Russia, and the USA. Based on the evidence, it is likely that P. leptostachya originated in North America and later migrated to East Asia via the Russian Far East and the Bering Land Bridge. CONCLUSIONS In conclusion, our study demonstrates clear molecular differences among P. leptostachya populations from various geographic locations, suggesting that these populations should be recognized as distinct species rather than conspecifics.
Collapse
Affiliation(s)
- Yeseul Kim
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Sumin Jeong
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea.
| | - Hye-Kyoung Moon
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Gu J, Li M, He S, Li Z, Wen F, Tan K, Bai X, Hu G. Comparative chloroplast genomes analysis of nine Primulina (Gesneriaceae) rare species, from karst region of southwest China. Sci Rep 2024; 14:30256. [PMID: 39632936 PMCID: PMC11618659 DOI: 10.1038/s41598-024-81524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Guizhou Province is one of the most important karst regions of southwest China, with 22 Primulina species. These species are highly habitat-specialized and dependent on the soils of the karst region, and many inter-species classifications are unclear. Therefore, studying the chloroplast genomes and estimating the divergence times of there species can not only provide a better understanding of interspecific relationships but also help to know the species speciation and divergence in the karst environment. So, we sequenced and assembled the chloroplast genomes of nine Primulina species (including six endemic species of Guizhou) and conducted chloroplast genome comparison analysis and phylogenetic study. The chloroplast genome structures of the nine Primulina species were quadripartite with total lengths of 152,869-153,364 base pairs (bp) and GC content of 37.55-37.64%. There are 132 functional genes annotated, respectively. A total of 375 simple sequence repeats and 375 interspersed nuclear elements were identified. The 30 highly preferred codons identified were used at similar frequencies in different species, respectively. A phylogenetic tree constructed on the basis of the 38 chloroplast genomes showed that Primulina species form a monophyletic group. Eleven mutational hotspot regions that could serve as potential molecular markers were identified, of which two regions near the 3' and 5' ends of the ycf1 gene were of appropriate size and can serve as molecular markers for phylogenetic studies of Primulina. The results of molecular clock analyses indicate that the three major branches of Primulina begin to diverge in the Miocene, and the number of species proliferated in the Pliocene and Pleistocene. Most of the species of Primulina in Guizhou Province were formed in the Pleistocene and rapidly diverged within a short period of time. This research study enriches the genetic resource information of Primulina and deepens the understanding of the phylogenetic relationships of the genus.
Collapse
Affiliation(s)
- Jiangmiao Gu
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Meijun Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Songtao He
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
- Biodiversity and Nature Conservation Research Center, Guizhou University, Guiyang, 550025, China
| | - Fang Wen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
- Gesneriad Committee of China Wild Plant Conservation Association, National Gesneriaceae Germplasm Resources Bank of GXIB, Gesneriad Conservation Center of China, Guilin, 541006, China
| | - Ke Tan
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
- Gesneriad Committee of China Wild Plant Conservation Association, National Gesneriaceae Germplasm Resources Bank of GXIB, Gesneriad Conservation Center of China, Guilin, 541006, China
| | - Xinxiang Bai
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Guoxiong Hu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Chetri BK, Senapati A, Shelke RG, Mitra S, Rangan L. Phylogenetic exploration, codon usage bias, and genomic divergence in Hydrocotyle: a comparative plastome study across different geographical locations. Genetica 2024; 152:199-209. [PMID: 39327345 DOI: 10.1007/s10709-024-00213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Hydrocotyle himalaica from Bhutan, a perennial herb that thrives from 1500 to 2600 m, possesses both ecological importance and medicinal properties. The plastome analysis revealed a length of 153,383 bp, showing variation from conspecific taxa in China. Its standard structure comprises two IR regions (18,336 bp IRa and 18,336 bp IRb), an LSC region of 97,944 bp, and an SSC region of 18,767 bp, with a GC content of 37.63%. Non-coding regions showed higher mutation susceptibility, with Pi values from 0.006 to 0.107. An AT-rich codon bias was consistent across all 18 Hydrocotyle species. Nucleotide composition and GC% in coding sequences differed among the species. The codon preference in Hydrocotyle is shaped by multiple factors, with natural selection being the primary influence, as indicated by the ENC-plot, PR2-plot, and Neutrality-plot. Codon usage patterns varied, with RSCU values from 0 to 2.23. Codons ending in A or U had RSCU > 1, while those ending in C or G had RSCU < 1. GC2 content surpassed GC3 and GC1 in most genes. The phylogenetic analysis placed H. himalaica, sourced from Kanglung, Bhutan, within the monophyly of the Hydrocotyloideae subfamily. However, the species showed weaker bootstrap support (BS < 50) with H. javanica and H. hookeri subsp., a deviation from a prior report on the same species from Jiangkou, Guizhou, China. This analysis highlighted the genomic characteristics and evolutionary relationships of H. himalaica from Bhutan, underscoring the need for a comprehensive phylogenetic, ecological, and botanical characterization to confirm intra-specific variation within Hydrocotyle species.
Collapse
Affiliation(s)
- Bimal K Chetri
- School of Agro and Rural Technology, Indian Institute of Technology, Guwahati, Assam, 781 039, India
- Department of Environment and Life Sciences, Sherubtse College, Royal University of Bhutan, 42002, Kanglung, Bhutan
| | - Alok Senapati
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781 039, India
| | - Rahul G Shelke
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781 039, India
| | - Sudip Mitra
- School of Agro and Rural Technology, Indian Institute of Technology, Guwahati, Assam, 781 039, India
| | - Latha Rangan
- School of Agro and Rural Technology, Indian Institute of Technology, Guwahati, Assam, 781 039, India.
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781 039, India.
| |
Collapse
|
4
|
Zeng MY, Li MH, Lan S, Yin WL, Liu ZJ. Comparative Phylogenomic Study of Malaxidinae (Orchidaceae) Sheds Light on Plastome Evolution and Gene Divergence. Int J Mol Sci 2024; 25:11181. [PMID: 39456963 PMCID: PMC11508673 DOI: 10.3390/ijms252011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Malaxidinae is one of the most confusing groups in the Orchidaceae classification. Previous phylogenetic analyses have revealed that the relationships between the taxa in Malaxidinae have not yet been reliably established, using only a few plastome regions and nuclear ribosomal internal transcribed spacer (nrITS). In the present study, the complete plastomes of Oberonia integerrima and Crepidium purpureum were assembled using high-throughput sequencing. Combined with publicly available complete plastome data, this resulted in a dataset of 19 plastomes, including 17 species of Malaxidinae. The plastome features and phylogenetic relationships were compared and analyzed. The results showed the following: (1) Malaxidinae species plastomes possess the quadripartite structure of typical angiosperms, with sizes ranging from 142,996 to 158,787 bp and encoding from 125 to 133 genes. The ndh genes were lost or pseudogenized to varying degrees in six species. An unusual inversion was detected in the large single-copy region (LSC) of Oberonioides microtatantha. (2) Eight regions, including ycf1, matK, rps16, rpl32, ccsA-ndhD, clpP-psbB, trnFGAA-ndhJ, and trnSGCU-trnGUCC, were identified as mutational hotspots. (3) Based on complete plastomes, 68 protein-coding genes, and 51 intergenic regions, respectively, our phylogenetic analyses revealed the genus-level relationships in this subtribe with strong support. The Liparis was supported as non-monophyletic.
Collapse
Affiliation(s)
- Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Zhou CY, Lin WJ, Li R, Wu Y, Liu ZJ, Li MH. Characterization of Angraecum (Angraecinae, Orchidaceae) Plastomes and Utility of Sequence Variability Hotspots. Int J Mol Sci 2023; 25:184. [PMID: 38203355 PMCID: PMC10779182 DOI: 10.3390/ijms25010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Angraecum, commonly known as Darwin's orchid, is the largest genus of Angraecinae (Orchidaceae). This genus exhibits a high morphological diversity, making it as a good candidate for macroevolutionary studies. In this study, four complete plastomes of Angraecum were firstly reported and the potential variability hotspots were explored. The plastomes possessed the typical quadripartite structure and ranged from 150,743 to 151,818 base pair (bp), with a guanine-cytosine (GC) content of 36.6-36.9%. The plastomes all contained 120 genes, consisting of 74 protein-coding genes (CDS), 38 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes; all ndh genes were pseudogenized or lost. A total of 30 to 46 long repeats and 55 to 63 SSRs were identified. Relative synonymous codon usage (RSCU) analysis indicated a high degree of conservation in codon usage bias. The Ka/Ks ratios of most genes were lower than 1, indicating that they have undergone purifying selection. Based on the ranking of Pi (nucleotide diversity) values, five regions (trnSGCU-trnGGCC, ycf1-trnNGGU, trnNGUU-rpl32, psaC-ndhE and trnSGCU-trnGGCC) and five protein-coding genes (rpl32, rps16, psbK, rps8, and ycf1) were identified. The consistent and robust phylogenetic relationships of Angraecum were established based on a total of 40 plastomes from the Epidendroideae subfamily. The genus Angraecum was strongly supported as a monophyletic group and sister to Aeridinae. Our study provides an ideal system for investigating molecular identification, plastome evolution and DNA barcoding for Angraecum.
Collapse
Affiliation(s)
- Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Wen-Jun Lin
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Yuhan Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.-Y.Z.); (R.L.); (Y.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|