1
|
Shen J, Lin H, Mo K, Liang Z, Zhang Y, Quan H, Wang X, Zhang C, Chen C. Bidirectional roles of neutrophil extracellular traps in oral microbiota carcinogenesis: A systematic review. Transl Oncol 2025; 56:102361. [PMID: 40239243 DOI: 10.1016/j.tranon.2025.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are network structures composed of DNA, histones, and antimicrobial proteins,released by activated neutrophils to trap and eliminate extracellular pathogens. Recent research has demonstrated a strong correlation between NETs and various diseases, including immune dysregulation, thrombosis, and malignancies. This review synthesizes current research on NETs, focusing on its biological role in oral squamous cell carcinoma (OSCC) and explores its potential in treating. METHODS A literature review in the PubMed database was conducted to examine the impact of NETs on the homeostasis of oral microbiota and the involvement in the development of oral microbiota-related carcinogenesis. RESULTS Various microorganisms, including Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus spp., along with Candida albicans, as well as certain viruses such as Human papillomavirus (HPV), Human herpes virus 8 (HHV-8), and Herpes simplex virus-1 (HSV-1)are regulated by NETs during oral colonization and proliferation and have been identified as contributors to the pathogenesis of oral squamous cell carcinoma. NETs have been shown to play a dual role in the carcinogenic process of oral microbiota in humans. At the initial stage of tumor formation, NETs inhibit tumorigenesis by eliminating tumorigenic bacteria that infiltrated the tumor; however, following tumor establishment, various cytokines and chemokines that promote tumor progression are released by neutrophils during the NETs formation. CONCLUSION This article reviews the oncogenic mechanisms of NETs in the oral microbiota, with potential implications for early tumor detection and the development of microbe-targeted therapies.
Collapse
Affiliation(s)
- Jie Shen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Haitao Lin
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Kangnan Mo
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhong Liang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yan Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Huatao Quan
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xing Wang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chenping Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Chao Chen
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Soma GI, Oda M, Tjhin VT, Kohchi C, Inagawa H. Oral and transdermal administration of lipopolysaccharide safely enhances self-healing ability through the macrophage network. Front Immunol 2025; 16:1563484. [PMID: 40230835 PMCID: PMC11994614 DOI: 10.3389/fimmu.2025.1563484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Lipopolysaccharide (LPS), also known as an endotoxin, is derived from Gram-negative bacteria. The intravenous administration of LPS induces an inflammatory response and causes systemic inflammation, such as cytokine storm. Gram-negative bacteria that produce LPS are found in the environment and digestive tract. The mucous membrane, the primary barrier between the interior of the body and the external environment, is constantly exposed to LPS. Moreover, no toxicity is observed when administering LPS through the mucous membranes of the mouth or skin. The presence of LPS in the mucous membranes is necessary not only for maintaining health but also for inducing preventive and therapeutic effects against multiple diseases when administered orally or topically. LPS is an environmental substance that is useful when administered to mucous membranes. The general information emphasizes the role of LPS as an inflammatory substance that occurs when administered intravenously. Therefore, the valuable role of LPS is unknown. Thus, mucosal administration of LPS has received little attention, and the mechanism underlying the expression of its beneficial effects has not been fully elucidated. We proposed a comprehensive concept, the "macrophage network," which proposes a regulatory system in which the mucosa receives environmental information, membrane-bound cytokines are expressed in phagocytes (macrophages), and these macrophages migrate distally to exert effects, such as anti-inflammatory and tissue repair effects, on distal tissues through cell-to-cell communication (juxtacrine signaling) with tissue macrophages. This macrophage network is effective not only for preventing and treating diseases but also for increasing the efficacy of pharmaceuticals. This review aims to investigate the preventive and therapeutic effects of oral and transdermal administration of LPS on various diseases and present an introduction to the concept of the macrophage network and the latest findings.
Collapse
Affiliation(s)
- Gen-Ichiro Soma
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masataka Oda
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Vindy Tjendana Tjhin
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
3
|
Wu G, Jin R, Liao J, Zhang J, Liu X. Molecular subtype and prognostic model of laryngeal squamous cell carcinoma based on neutrophil extracellular trap-related genes. Transl Cancer Res 2025; 14:1772-1785. [PMID: 40224984 PMCID: PMC11985177 DOI: 10.21037/tcr-24-1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/18/2025] [Indexed: 04/15/2025]
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a prevalent type of head and neck cancer with a poor prognosis due to late diagnosis and limited biomarkers. Neutrophil extracellular traps (NETs) play a critical role in cancer biology, but their involvement in LSCC is not well understood. This study aimed to explore NET's role in LSCC. Methods Differentially expressed NET-related genes (DE-NRGs) were identified using GSE10935 datasets and data from The Cancer Genome Atlas (TCGA) database. Functional enrichment and pathway analyses were conducted to elucidate their roles. Consensus clustering identified LSCC molecular subtypes. Immune landscape analyses revealed the tumor microenvironment of different subtypes. A prognostic model was developed using least absolute shrinkage and selection operator(LASSO) regression and validated in external datasets. Results We identified 27 DE-NRGs in LSCC, and these genes were involved in heparin binding, cytokine activity, and leukocyte migration. Three molecular subtypes (C1, C2, and C3) were identified, with C3 showing the worst prognosis. Immune landscape analysis revealed significant differences in immune cell infiltration among subtypes. Higher expression of immune checkpoint genes in C2 suggested better immunotherapy outcomes. The prognostic model, based on seven hub DE-NRGs (ENO1, CD44, PTX3, P2RY14, CCL5, KLF2, MYH9), demonstrated good predictive performance with area under curve (AUC) values >0.61 for 1-, 3-, and 5-year overall survival. External validation confirmed the model's robustness. Conclusions The study identified DE-NRGs as potential biomarkers and developed a robust prognostic model for LSCC. These findings offer insights into LSCC's molecular basis and highlight NETs' role in prognosis and immune landscape.
Collapse
Affiliation(s)
- Guiqin Wu
- Otorhinolaryngology, Head and Neck Surgery Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Riqun Jin
- Otorhinolaryngology, Head and Neck Surgery Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiahua Liao
- Medical Oncology Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianhua Zhang
- Academic Affairs Department, The First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Xuemei Liu
- Otorhinolaryngology, Head and Neck Surgery Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
6
|
Yagi T, Kagawa S, Nogi S, Taniguchi A, Yoshimoto M, Suemori K, Nagai Y, Fujita S, Kuroda S, Kikuchi S, Kakiuchi Y, Teraishi F, Takagi K, Ohara T, Tazawa H, Fujiwara T. Cancer-associated fibroblasts promote pro-tumor functions of neutrophils in pancreatic cancer via IL-8: potential suppression by pirfenidone. Cancer Immunol Immunother 2025; 74:96. [PMID: 39904796 PMCID: PMC11794937 DOI: 10.1007/s00262-025-03946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND The mechanisms by which neutrophils acquire pro-tumor properties remain poorly understood. In pancreatic cancer, cancer-associated fibroblasts (CAFs) may interact with neutrophils, directing them to promote tumor progression. METHODS To validate the association between CAFs and neutrophils, the localization of neutrophils was examined in clinically resected pancreatic cancer specimens. CAFs were produced by culturing in cancer-conditioned media, and the effects of these CAFs on neutrophils were examined. In vitro migration and invasion assays assess the effect of CAF-activated neutrophils on cancer cells. The factors secreted by the activated neutrophils were also explored. Finally, pirfenidone (PFD) was tested to determine whether it could suppress the pro-tumor functions of activated neutrophils. RESULTS In pancreatic cancer specimens, neutrophils tended to co-localize with IL-6-positive CAFs. Neutrophils co-cultured with CAFs increased migratory capacity and prolonged life span. CAF-affected neutrophils enhance the migratory and invasive activities of pancreatic cancer cells. IL-8 is the most upregulated cytokine secreted by the neutrophils. PFD suppresses IL-8 secretion from CAF-stimulated neutrophils and mitigates the malignant traits of pancreatic cancer cells. CONCLUSION CAFs activate neutrophils and enhance the malignant phenotype of pancreatic cancer. The interactions between cancer cells, CAFs, and neutrophils can be disrupted by PFD, highlighting a potential therapeutic approach.
Collapse
Affiliation(s)
- Tomohiko Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Shohei Nogi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Atsuki Taniguchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Masashi Yoshimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Kanto Suemori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yasuo Nagai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shuto Fujita
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Kosei Takagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Departments of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
7
|
Du YZ, Yang JQ, Yao JM, Zhang CT, Liu YF. Association between the neutrophil-to-high-density lipoprotein cholesterol ratio with kidney stone risk: a cross-sectional study. Front Endocrinol (Lausanne) 2025; 16:1523890. [PMID: 39963279 PMCID: PMC11830614 DOI: 10.3389/fendo.2025.1523890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Kidney stones are a major issue for public health worldwide. Discovering potential clues in identifying at-risk individuals is essential for early detection and timely treatment. This study explores the relationship of the neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) with the risk of kidney stones in U.S. adults. Methods The analysis involved 24,532 participants with available NHR and kidney stone data from the 2007-2018 NHANES period. Multivariable logistic regression models were used to quantify the relationship between NHR and kidney stone occurrence. Subgroup analyses were conducted to explore variations in effect. Results A total of 2,351 participants (9.93%) were diagnosed with kidney stones, and their mean age was 47.20 ± 0.26 years. After full adjustment in the multivariable regression model, higher NHR levels were linked to a greater risk of kidney stones (OR = 1.05, 95% CI: 1.02-1.08, P = 0.002). Participants in the highest tertile of NHR had a 34% increased chance of kidney stone development compared to those in the lowest tertile. A nonlinear connection between NHR and kidney stone risk was identified using restricted cubic spline (RCS) regression models. The relationship between NHR and kidney stone prevalence showed no significant variation across most subgroups (P for interaction > 0.05). Conclusion The results indicate that increased NHR is linked to a higher risk of kidney stones, with this relationship remaining consistent across various populations. NHR could be a useful biomarker for kidney stone risk, with key implications for early detection and individualized treatment.
Collapse
Affiliation(s)
- Yuan-Zhuo Du
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jia-Qing Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ji-Ming Yao
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chi-Teng Zhang
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yi-Fu Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Zhang C, Lu Y. MiR-223 within neutrophil axis promotes Th17 expansion by PI3K-AKT pathway in systemic lupus erythematosus. Arthritis Res Ther 2025; 27:21. [PMID: 39901260 PMCID: PMC11789401 DOI: 10.1186/s13075-025-03487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
INTRODUCTION Further investigation is required to determine the etiology of systemic lupus erythematosus (SLE). The aim of this study is to assess the presence of miR-223 within neutrophils in SLE and investigate its impact on the expansion of Th17 cells. METHODS Experiments were performed in MRL/lpr mice, which were divided into control and miR-223 knockdown (miR-223-) group. We assessed miR-223 expression within neutrophils and Th17 expansion in MRL/lpr mice and patients with SLE using RT-PCR, luciferase reporter assay, Elisa, flow cytometry analysis. Signaling pathway, RT-PCR and western blot were conducted to elucidate the mechanism by which miR-223 within neutrophils expands Th17. RESULTS We initially identified miR-223 as a pivotal factor in the pathogenesis of SLE in both MRL/lpr mice and SLE patients. Subsequently, knockdown of miR-223 led to a significant reduction in Th17 expansion in MRL/lpr mice. Moreover, inhibition of miR-223 effectively attenuated the recruitment and activation of neutrophils in SLE. Furthermore, we found rb6-8c5 treatment alleviated lupus symptoms of MRL/lpr mice and reduce the level of Th17. Finally, we elucidated that neutrophils potentiate the induction of Th17 through the activation of thePI3K-AKT pathway mediated by miR-223 during SLE-associated Th17 expansion. CONCLUSION MiR-223 within neutrophil axis contributes to Th17 expansion by PI3K-AKT pathway in SLE, and miR-223 could be a therapeutic target of SLE.
Collapse
Affiliation(s)
- Chengzhong Zhang
- Department of Dermatology, the First affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, the First affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Hashim NT, Babiker R, Dasnadi SP, Islam MS, Chaitanya NCSK, Mohammed R, Farghal NS, Gobara B, Rahman MM. The Impact of Ozone on Periodontal Cell Line Viability and Function. Curr Issues Mol Biol 2025; 47:72. [PMID: 39996793 PMCID: PMC11854817 DOI: 10.3390/cimb47020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Periodontal diseases, including gingivitis and periodontitis, are chronic inflammatory conditions of the teeth' supporting structures that can lead to progressive tissue destruction and loss if left untreated. Basic treatments like scaling and root planing, alone or combined with antimicrobial agents, are the standard of care. However, with the increasing prevalence of antibiotic resistance and the need for new ideas in therapy, adjunctive treatments like ozone therapy have gained attention. Ozone (O3), a triatomic oxygen molecule, is used because of its strong antimicrobial, anti-inflammatory, and regenerative activity and, hence, as a potential tool in periodontal therapy. This review of the use of ozone therapy in periodontal disease breaks down the multifaceted mechanism of ozone therapy, which includes the selective antimicrobial action against biofilm-associated pathogens, immunomodulatory effects on host cells, and stimulation of tissue repair. O3 therapy disrupts microbial biofilms, enhances immune cell function, and promotes healing by activating Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways that regulate oxidative stress, inflammation, and apoptosis. Additional findings include its ability to upregulate growth factors and extracellular matrix proteins, which is significant for periodontal tissue regeneration. This review also discusses the application of O3 therapy in periodontal cell lines, emphasizing its impact on cell viability, proliferation, and differentiation. Advances in periodontal regenerative techniques, combined with the antimicrobial and healing properties of O3, have demonstrated significant clinical benefits. Challenges, including the need for standardized dosages, effective delivery systems, and long-term studies, are also addressed to ensure safe and effective clinical integration. O3 therapy, with its dual antimicrobial and regenerative capabilities, offers an innovative adjunctive approach to periodontal treatment. Future research focusing on optimized protocols and evidence-based guidelines is essential to fully realize its potential in enhancing periodontal health and improving patient outcomes.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Shahistha Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department Operative Dentistry, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Nallan CSK Chaitanya
- Department of Oral Medicine & Radiology, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department of Oral Surgery, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Nancy Soliman Farghal
- Department of Endodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| | - Bakri Gobara
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, UAE Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah 12973, United Arab Emirates;
| |
Collapse
|
10
|
Piccioni A, Spagnuolo F, Baroni S, Savioli G, Valletta F, Bungaro MC, Tullo G, Candelli M, Gasbarrini A, Franceschi F. The Need for Standardized Guidelines for the Use of Monocyte Distribution Width (MDW) in the Early Diagnosis of Sepsis. J Pers Med 2024; 15:5. [PMID: 39852198 PMCID: PMC11766780 DOI: 10.3390/jpm15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Sepsis is a complex and potentially life-threatening syndrome characterized by an abnormal immune response to an infection, which can lead to organ dysfunction, septic shock, and death. Early diagnosis is crucial to improving prognosis and reducing hospital management costs. This narrative review aims to summarize and evaluate the current literature on the role of monocyte distribution width (MDW) as a diagnostic biomarker for sepsis, highlighting its advantages, limitations, and potential clinical applications. MDW measures the volumetric distribution width of monocytes, reflecting monocytic anisocytosis, and is detected using advanced hematological analyzers. In 2019, it was approved by the FDA as a biomarker for sepsis due to its ability to identify systemic inflammatory response at an early stage. Thirty-one studies analyzed by us have shown that an increased MDW value is associated with a higher risk of sepsis and that its combination with clinical parameters (such as qSOFA) and other biomarkers (CRP, PCT) can enhance diagnostic sensitivity and risk stratification capacity. Despite its high sensitivity, MDW has lower specificity compared to more established biomarkers such as procalcitonin, thus requiring a multimodal integration for an accurate diagnosis. The use of MDW in emergency and intensive care settings represents an opportunity to improve early sepsis diagnosis and critical patient management, particularly when combined with other markers and clinical tools. However, further studies are needed to define a universal cut-off and confirm its validity in different clinical contexts and pathological scenarios.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (F.V.); (M.C.B.); (G.T.); (M.C.); (F.F.)
| | - Fabio Spagnuolo
- Facutly of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.B.); (A.G.)
| | - Silvia Baroni
- Facutly of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.B.); (A.G.)
- Unit of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Laboratory and Hematological Sciences, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Savioli
- Department of Emergency Medicine and Surgery, IRCCS Fondanzione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Federico Valletta
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (F.V.); (M.C.B.); (G.T.); (M.C.); (F.F.)
| | - Maria Chiara Bungaro
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (F.V.); (M.C.B.); (G.T.); (M.C.); (F.F.)
| | - Gianluca Tullo
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (F.V.); (M.C.B.); (G.T.); (M.C.); (F.F.)
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (F.V.); (M.C.B.); (G.T.); (M.C.); (F.F.)
- Facutly of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.B.); (A.G.)
| | - Antonio Gasbarrini
- Facutly of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.B.); (A.G.)
- Medical and Surgical Science Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (F.V.); (M.C.B.); (G.T.); (M.C.); (F.F.)
- Facutly of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.B.); (A.G.)
| |
Collapse
|
11
|
Wu W, Meng F, Zhang H, Tian H, Zhang X. Neutrophil PPIF exacerbates lung ischemia-reperfusion injury after lung transplantation by promoting calcium overload-induced neutrophil extracellular traps formation. Int Immunopharmacol 2024; 142:113051. [PMID: 39236457 DOI: 10.1016/j.intimp.2024.113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Lung ischemia-reperfusion (I/R) injury is the main risk factor for primary graft dysfunction and patient death after lung transplantation (LTx). It is widely accepted that the main pathological mechanism of lung I/R injury are calcium overload, oxygen free radical explosion and neutrophil-mediated damage, which leading to the lack of effective treatment options. The aim of this study was to further explore the mechanisms of lung I/R injury after LTx and to provide potential therapeutic strategies. Our bioinformatics analysis revealed that the neutrophil extracellular traps (NETs) formation was closely involved in lung I/R injury after LTx, which was accompanied by up-regulation of peptidylprolyl isomerase F (PPIF) and peptidyl arginine deiminase 4 (PADI4). We further established an orthotopic LTx mouse model to simulate lung I/R injury in vivo, and found that PPIF and PADI4 inhibitors effectively reduced neutrophil infiltration, NETs formation, inflammatory response, and lung I/R injury. In the neutrophil model induced by HL-60 cell line in vitro, we found that PPIF inhibitor cyclosporin A (Cys A) better alleviated calcium overload induced inflammatory response, reactive oxygen species content and NETs formation. Further study demonstrated that interfering with neutrophil PPIF protected mitochondrial function by alleviating store-operated calcium entry (SOCE) during calcium overload and played the above positive role. On this basis, we found that the reduction of calcium content in neutrophils was accompanied by the inhibition of calcineurin (CN) and nuclear factor of activated T cells (NFAT). In conclusion, our findings suggested that neutrophil PPIF could serve as a novel biomarker and potential therapeutic target of lung I/R injury after LTx, which provided new clues for its treatment by inhibiting calcium overload-induced NETs formation.
Collapse
Affiliation(s)
- Wensi Wu
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
12
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Xia M, Han Y, Sun L, Li D, Zhu C, Li D. The role of neutrophils in osteosarcoma: insights from laboratory to clinic. Front Immunol 2024; 15:1490712. [PMID: 39582869 PMCID: PMC11582048 DOI: 10.3389/fimmu.2024.1490712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Osteosarcoma, a highly aggressive malignant bone tumor, is significantly influenced by the intricate interactions within its tumor microenvironment (TME), particularly involving neutrophils. This review delineates the multifaceted roles of neutrophils, including tumor-associated neutrophils (TANs) and neutrophil extracellular traps (NETs), in osteosarcoma's pathogenesis. TANs exhibit both pro- and anti-tumor phenotypes, modulating tumor growth and immune evasion, while NETs facilitate tumor cell adhesion, migration, and immunosuppression. Clinically, neutrophil-related markers such as the neutrophil-to-lymphocyte ratio (NLR) predict patient outcomes, highlighting the potential for neutrophil-targeted therapies. Unraveling these complex interactions is crucial for developing novel treatment strategies that harness the TME to improve osteosarcoma management.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongsong Li
- Department of Orthopedics, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
14
|
Ćurko-Cofek B, Jenko M, Taleska Stupica G, Batičić L, Krsek A, Batinac T, Ljubačev A, Zdravković M, Knežević D, Šoštarič M, Sotošek V. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery-Exploring the Molecular Connections. Int J Mol Sci 2024; 25:10891. [PMID: 39456673 PMCID: PMC11508174 DOI: 10.3390/ijms252010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Since its introduction, the number of heart surgeries has risen continuously. It is a high-risk procedure, usually involving cardiopulmonary bypass, which is associated with an inflammatory reaction that can lead to perioperative and postoperative organ dysfunction. The extent of complications following cardiac surgery has been the focus of interest for several years because of their impact on patient outcomes. Recently, numerous scientific efforts have been made to uncover the complex mechanisms of interaction between inflammation, oxidative stress, and endothelial dysfunction that occur after cardiac surgery. Numerous factors, such as surgical and anesthetic techniques, hypervolemia and hypovolemia, hypothermia, and various drugs used during cardiac surgery trigger the development of systemic inflammatory response and the release of oxidative species. They affect the endothelium, especially endothelial glycocalyx (EG), a thin surface endothelial layer responsible for vascular hemostasis, its permeability and the interaction between leukocytes and endothelium. This review highlights the current knowledge of the molecular mechanisms involved in endothelial dysfunction, particularly in the degradation of EG. In addition, the major inflammatory events and oxidative stress responses that occur in cardiac surgery, their interaction with EG, and the clinical implications of these events have been summarized and discussed in detail. A better understanding of the complex molecular mechanisms underlying cardiac surgery, leading to endothelial dysfunction, is needed to improve patient management during and after surgery and to develop effective strategies to prevent adverse outcomes that complicate recovery.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Matej Jenko
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Gordana Taleska Stupica
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Antea Krsek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Aleksandra Ljubačev
- Department of Surgery, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Maja Šoštarič
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
15
|
Xiang Y, Pan BH, Zhang J, Chen JQ, Fang H, Wang Q, Li LH, Chen TS, Chen JX, Li C, Zheng XF, Zhu SH. Suppression of overactivated immunity in the early stage is the key to improve the prognosis in severe burns. Front Immunol 2024; 15:1455899. [PMID: 39308854 PMCID: PMC11412824 DOI: 10.3389/fimmu.2024.1455899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background Severe burns can lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS) due to inflammation-immunity dysregulation. This study aimed to identify key immune-related molecules and potential drugs for immune regulation in severe burn treatment. Method Microarray datasets GSE77791 and GSE37069 were analyzed to identify immune-related differentially expressed genes (DEGs), enriched pathways and prognosis-related genes. The DGIdb database was used to identify potentially clinically relevant small molecular drugs for hub DEGs. Hub DEGs were validated by total RNA from clinical blood samples through qPCR. The efficacy of drug candidates was tested in a severe burn mouse model. Pathologic staining was used to observe organ damage. Enzyme Linked Immunosorbent Assay (ELISA) was used to detect the serum IL-1b, IL-6, TNF-a and MCP-1 contents. Activation of the NF-κB inflammatory pathway was detected by western blotting. Transcriptome sequencing was used to observe inflammatory-immune responses in the lung. Results A total of 113 immune-related DEGs were identified, and the presence of immune overactivation was confirmed in severe burns. S100A8 was not only significantly upregulated and identified to be prognosis-related among the hub DEGs but also exhibited an increasing trend in clinical blood samples. Methotrexate, which targets S100A8, as predicted by the DGIdb, significantly reduces transcription level of S100A8 and inflammatory cytokine content in blood, organ damage (lungs, liver, spleen, and kidneys) and mortality in severely burned mice when combined with fluid resuscitation. The inflammatory-immune response was suppressed in the lungs. Conclusion S100A8 with high transcription level in blood is a potential biomarker for poor severe burn prognosis. It suggested that methotrexate has a potential application in severe burn immunotherapy. Besides, it should be emphasized that fluid resuscitation is necessary for the function of methotrexate.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Bo-han Pan
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Jin Zhang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Ji-qiu Chen
- Department of Burns, Changhai Hospital, Shanghai, China
| | - He Fang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Qun Wang
- Department of Burns, Changhai Hospital, Shanghai, China
| | - Lin-hui Li
- Department of Burns, Changhai Hospital, Shanghai, China
| | | | - Jia-xin Chen
- Department of Burns, Changhai Hospital, Shanghai, China
- Department of Intensive Care Unit, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Chan Li
- Department of Burns, Changhai Hospital, Shanghai, China
| | | | - Shi-hui Zhu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, Shanghai, China
| |
Collapse
|
16
|
Cornillet M, Geanon D, Bergquist A, Björkström NK. Immunobiology of primary sclerosing cholangitis. Hepatology 2024:01515467-990000000-01014. [PMID: 39226402 DOI: 10.1097/hep.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic inflammatory progressive cholestatic liver disease. Genetic risk factors, the presence of autoantibodies, the strong clinical link with inflammatory bowel disease, and associations with other autoimmune disorders all suggest a pivotal role for the immune system in PSC pathogenesis. In this review, we provide a comprehensive overview of recent immunobiology insights in PSC. A particular emphasis is given to immunological concepts such as tissue residency and knowledge gained from novel technologies, including single-cell RNA sequencing and spatial transcriptomics. This review of the immunobiological landscape of PSC covers major immune cell types known to be enriched in PSC-diseased livers as well as recently described cell types whose biliary localization and contribution to PSC immunopathogenesis remain incompletely described. Finally, we emphasize the importance of time and space in relation to PSC heterogeneity as a key consideration for future studies interrogating the role of the immune system in PSC.
Collapse
Affiliation(s)
- Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Geanon
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Bergquist
- Unit of Gastroenterology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Liu Z, Ting Y, Li M, Li Y, Tan Y, Long Y. From immune dysregulation to organ dysfunction: understanding the enigma of Sepsis. Front Microbiol 2024; 15:1415274. [PMID: 39252831 PMCID: PMC11381394 DOI: 10.3389/fmicb.2024.1415274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Sepsis is a syndrome precipitated by immune dysregulation in response to infection, and represents a pivotal factor in global mortality attributed to diseases. The recent consensus delineates sepsis as a perilous state of organ dysfunction arising from the host's maladaptive reaction to infection. It masks the complexity and breadth of the immune mechanisms involved in sepsis, which is characterized by simultaneous hyperinflammation and immunosuppression. Sepsis is highly correlated with the dysregulation of immune response, which is mainly mediated by various immune cells and their interactions. This syndrome can lead to a plethora of complications, encompassing systemic inflammatory response, metabolic disturbances, infectious shock, MODS, and DIC. Furthermore, more research studies have been conducted on sepsis in the past few years. The pathological characteristics of sepsis have been improved or treated by targeting signaling pathways like NF-B, JAK-STAT, PI3K-Akt, and p38-MAPK. Combined drug therapy is better than single drug therapy for sepsis. This article will review the latest progress in the pathogenesis and treatment of sepsis.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yuan Ting
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Miao Li
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, China
- Medical College, Jishou University, Xiangxi Tujia and Miao Autonomous Prefecture, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| |
Collapse
|
18
|
Wang X, Geng Z, Bao Y, Zhong J, Ma J, Cui X, Shi Y. Shufeng Jiedu capsule alleviates influenza A (H1N1) virus induced acute lung injury by regulating the lung inflammatory microenvironment. Heliyon 2024; 10:e33237. [PMID: 39021925 PMCID: PMC11252743 DOI: 10.1016/j.heliyon.2024.e33237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Death caused by respiratory tract infection is one of the leading causes of death in the world today. Shufeng Jiedu Capsule (SFJDC) is a traditional Chinese medicine that has been widely used clinically for coronavirus disease 2019 (COVID-19), H1N1 influenza virus pneumonia and other diseases. Its pharmacological effect is to inhibit inflammation and improve the body's ability to clear viruses. However, the mechanism of SFJDC in the treatment of viral pneumonia, especially its effect on the inflammatory-immune microenvironment of lung tissue remains unclear. Methods Mice with H1N1 influenza virus pneumonia were used as a model to verify the efficacy of SFJDC through death protection, lung index, viral load, and HE staining of lung tissue. The levels of inflammatory cytokines and chemokines in lung tissue were investigated by multi-analyte immunoassay. The number and proportion of cells in peripheral blood were detected by blood routine. The percentage of infiltrating immune cells in lung tissue was detected by flow cytometry and immunofluorescence. Results SFJDC (2.2 g/kg·d-1 and 1.1 g/kg·d-1) increased survival rate (P<0.01, P<0.05), prolonged the survival period of mice, and alleviated the histopathological damage in lung (P<0.01). SFJDC (2.2 g/kg·d-1, 1.1 g/kg·d-1 and 0.055 g/kg·d-1) increased body weight(P<0.01, P<0.05), improved activity status, reduced the lung index (P<0.01, P<0.05) and viral load (P<0.01). SFJDC (2.2 g/kg·d-1 and 1.1 g/kg·d-1) reduced interleukin-1β (IL-1β), interleukin-18(IL-18), tumour necrosis factor α (TNF-α), monocyte chemoattractant protein (MCP), chemokine (C-X-C motif) ligand 1 (CXCL1) (P<0.01, P<0.05), and SFJDC (2.2 g/kg·d-1) increased IL-10 levels (P<0.05) to regulate inflammation. SFJDC (2.2 g/kg·d-1) increased the percentages of CD4+ T cells (P<0.01), CD8+ T cells (P<0.05), and B cells(P<0.05), and decreased F4/80+ macrophages (P<0.05). Conclusion Our findings indicated that SFJDC could inhibit inflammation and lung injury while maintaining the function of the adaptive immune response mediated by T and B cells, and promote the clearance of the virus, thereby treating influenza A (H1N1) virus-induced pneumonia.
Collapse
Affiliation(s)
- Xiaorui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Juying Zhong
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Jing Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| | - Yujing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100025, China
| |
Collapse
|
19
|
Lou X, Chen H, Chen S, Ji H, He T, Chen H, Zhu R, Le Y, Sang A, Yu Y. LL37/FPR2 regulates neutrophil mPTP promoting the development of neutrophil extracellular traps in diabetic retinopathy. FASEB J 2024; 38:e23697. [PMID: 38842874 DOI: 10.1096/fj.202400656r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.
Collapse
Affiliation(s)
- Xueying Lou
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hongliang Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Songwei Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Haixia Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tianzhen He
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Hui Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Aimin Sang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Ying Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
20
|
Moldovan F. Correlation between Peripheric Blood Markers and Surgical Invasiveness during Humeral Shaft Fracture Osteosynthesis in Young and Middle-Aged Patients. Diagnostics (Basel) 2024; 14:1112. [PMID: 38893638 PMCID: PMC11171808 DOI: 10.3390/diagnostics14111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The treatment for humeral shaft fractures (HSFs) is still controversial, consisting of a wide variety of orthopedic osteosynthesis materials that imply different grades of invasiveness. The aim of this study is to investigate the correlation between inflammatory blood-derived markers and the magnitude of the surgical procedure in young and middle-aged patients who sustained these fractures. Observational, retrospective research was conducted between January 2018 and December 2023. It followed patients diagnosed with recent HFSs (AO/OTA 12-A and B) and followed operative treatment. They were split in two groups, depending on the surgical protocol: group A, operated by closed reduction and internal fixation (CRIF) with intramedullary nails (IMNs), and group B, operated by open reduction and internal fixation (ORIF) with dynamic compression plates (DCPs). Statistically significant differences (p < 0.05) between the two groups could be observed in injury on the basis of surgery durations, surgical times, pre- and postoperative neutrophil-per-lymphocyte ratio (NLR), postoperative platelet-per-lymphocyte ratio (PLR), monocyte-per-lymphocyte ratio (MLR), systemic inflammatory index (SII), systemic inflammatory response index (SIRI) and aggregate inflammatory systemic index (AISI). The multivariate regression model proposed revealed that NLR > 7.99 (p = 0.007), AISI > 1668.58 (p = 0.008), and the surgical times (p < 0.0001) are strongly correlated to the magnitude of the surgical protocol followed. Using receiver operating characteristic (ROC) curve analysis, a balanced reliability was determined for both postoperative NLR > 7.99 (sensitivity 75.0% and specificity 75.6) and AISI > 1668.58 (sensitivity 70.6% and specificity 82.2%). Postoperative NLR and AISI as inflammatory markers are highly associated with the magnitude of surgical trauma sustained during humeral shaft fracture osteosynthesis in a younger population.
Collapse
Affiliation(s)
- Flaviu Moldovan
- Orthopedics-Traumatology Department, Faculty of Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
21
|
Gao Y, Zhou L, Su Q, Li Q. Identification of Lung Adenocarcinoma Subtypes Based on MHC-II Gene Expression Profile and Immunological Analysis. Int Arch Allergy Immunol 2024; 185:884-899. [PMID: 38636483 DOI: 10.1159/000538056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Major histocompatibility complex class II molecule (MHC-II) is pivotal in anti-tumor immunity, and targeting MHC-II in tumors may help improve patient survival. But function of MHC-II in the immunotherapy and prognosis of lung adenocarcinoma (LUAD) patients has not been thoroughly studied and reported. METHODS We selected LUAD-related MHC-II genes from public databases based on previous literature reports. We identified different subtypes according to expression differences of these genes in different LUAD samples through cluster analysis. We used R package to conduct a series of analyses on different subtypes, exploring their survival differences, gene expression differences, pathway enrichment differences, and differences in immune characteristics and immune therapy. Finally, we screened potential drugs from the cMAP database. RESULTS We identified two MHC-II-related LUAD subtypes. Our analyses presented that patients with cluster2 subtype showed better prognosis, higher immune scores, higher levels of immune cell infiltration and immune function activation. In addition, patients with this subtype had higher immunophenoscore, lower TIDE scores, and DEPTH scores. We also identified 10 small molecule drugs, such as lenalidomide, VX-745, and tyrphostin-AG-1295. CONCLUSION Overall, MHC-II is not only a potential biomarker for accurately distinguishing LUAD subtypes but also a predictive factor for their survival. Our study offers novel insights into understanding of impact of MHC-II in LUAD and offers a new perspective for improving the accurate classification of LUAD patients and enhancing drug treatment.
Collapse
Affiliation(s)
- Yongcai Gao
- Department of Respiratory Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Lingli Zhou
- Department of Respiratory Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Qiong Su
- Department of Respiratory Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Qiang Li
- Department of Neurosurgery Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| |
Collapse
|
22
|
Chen Q, Gu Q, Yin A, Cai D, Xiao T, Wang Y, Ji Y, Wang Q, Wei J, Sun L. Neutrophil Percentage as a Potential Biomarker of Acute Kidney Injury Risk and Short-Term Prognosis in Patients with Acute Myocardial Infarction in the Elderly. Clin Interv Aging 2024; 19:503-515. [PMID: 38525316 PMCID: PMC10959300 DOI: 10.2147/cia.s455588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Objective This study aimed to explore the association of preoperative neutrophil percentage (NEUT%) with the risk of acute kidney injury (AKI) in patients with acute myocardial infarction (AMI) having undergone coronary interventional therapy. Methods A single-center, retrospective and observational study was conducted. From December 2012 to June 2021, patients with AMI were enrolled and divided into AKI group and non-AKI group. The NEUT% in the two groups was compared. The association between NEUT% with the risk of post-AMI AKI was analyzed by univariate and multivariable logistic regression. Kaplan-Meier survival curve was drawn to evaluate the prognostic ability of NEUT% for short-term all-cause death following AMI. Results A total of 3001 consecutive patients were enrolled with an average age of 64.38 years. AKI occurred in 327 (10.9%) patients. The NEUT% was higher in the AKI group than in the non-AKI group ([76.65±11.43]% versus [73.22±11.83]%, P<0.001). NEUT% was also identified as an independent risk factor for AKI in AMI patients after adjustment (OR=1.021, 95% CI: 1.010-1.033, P < 0.001). Compared with those at the lowest quartile of NEUT%, the patients at quartiles 2-4 had a higher risk of AKI (P for trend = 0.003). The odds of AKI increased by 29.0% as NEUT% increased by 1 standard deviation (OR=1.290, 95% CI: 1.087-1.531, P = 0.004). After a median of 35 days follow-up, 93 patients died. Patients with a higher NEUT% presented a higher risk of all-cause death after AMI (Log rank: χ2 =24.753, P<0.001). Conclusion In AMI patients, the peripheral blood NEUT% was positively associated with the odds of AKI and short-term all-cause mortality. NEUT% may provide physicians with more information about disease development and prognosis.
Collapse
Affiliation(s)
- Qianwen Chen
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Qingqing Gu
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Anwen Yin
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Dabei Cai
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Yu Wang
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Yuan Ji
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Qingjie Wang
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Jun Wei
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241000, People’s Republic of China
| | - Ling Sun
- Department of Cardiology, the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| |
Collapse
|