1
|
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm 2025; 671:125206. [PMID: 39799999 DOI: 10.1016/j.ijpharm.2025.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time. It can damage the skin, eyes, heart, kidney, and lung. Oral medications, intra-articular injections, and other treatments are being used; nevertheless, they have drawbacks, including low bioavailability, numerous adverse effects, and poor patient compliance. Dissolving microneedles (DMNs) are a safe and painless method for transdermal drug delivery, achieved through their ability to physically penetrate the epidermal barrier. They enable targeted drug delivery, significantly enhancing the bioavailability of medications and improving patient compliance. DMNs are particularly effective in delivering both lipophilic and high molecular weight biomolecules. The superior bioavailability of DMNs is demonstrated by the fact that low-dose DMN administration can achieve up to 25.8 times higher bioavailability compared to oral administration. This paper provides a comprehensive review of recent advancements in the use of DMNs for RA treatment, encompassing various materials (such as hyaluronic acid, chitosan, etc.), fabrication techniques (such as the two-step casting method, photopolymerization), and performance evaluations (including morphology, mechanical properties, skin penetration capability, solubility, and pharmacodynamics). Additionally, a thorough safety assessment has been conducted, revealing that DMNs cause minimal skin irritation and exhibit low cytotoxicity, ensuring their safety for clinical application. DMNs provide a highly effective and promising alternative to oral and injectable drug delivery systems, offering a novel therapeutic approach for RA patients that significantly improves treatment outcomes and enhances their quality of life.
Collapse
Affiliation(s)
- Xueni Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiang Yue
- Department of Endocrinology and Metabolism Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shijie Guo
- Shengzhou Silk Protein Biotechnology Application Research Institute Zhejiang China
| | - Aysha Rahmatulla
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shuangshuang Li
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| |
Collapse
|
2
|
Bai B, Luo L, Yao F, Sun Q, Chen X, Zheng W, Jiang L, Wang X, Su G. The causal relationship between the human gut microbiota and pyogenic arthritis: a Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1452480. [PMID: 39660282 PMCID: PMC11629706 DOI: 10.3389/fcimb.2024.1452480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Background Recent studies have indicated the role of the gut microbiota in the progression of osteoarticular diseases, however, the causal relationship between the gut microbiota and pyogenic arthritis remains unclear. There is also a lack of theoretical basis for the application of the gut microbiota in the treatment of pyogenic arthritis. Methods In our study, we utilized the largest genome-wide association study (GWAS) data from the MiBioGen Consortium involving 13,400 participants and extracted summary statistical data of the microbiota metabolic pathways of 7,738 participants of European descent from the Dutch Microbiome Project (DMP) The data of pyogenic arthritis were derived from the FinnGen R10 database, including 1,086 patients and 147,221 controls. We employed the two-sample Mendelian randomization approach to investigate the causal association between the gut microbiota and pyogenic arthritis. Our methods comprised inverse variance weighting, Mendelian Randomization Egger regression, weighted median, and weighted modal methods. Subsequently, polygenic and heterogeneity analyses were conducted. Results At the class level, β-proteobacteria is positively correlated with the risk of pyogenic arthritis. At the order level, Burkholderia is positively associated with the disease. At the genus level, the unclassified genus of Sutterellaceae is positively correlated with the disease, while the unnamed genus of Lachnospiraceae, Rothia, and the unnamed genus of Erysipelotrichaceae are negatively correlated with the disease. In addition, Faecalibacterium and Finegoldia are also negatively correlated with the disease. Sensitivity analysis did not show any abnormal evidence. Conclusion This study indicates that β-proteobacteria, Burkholderiales, and the unclassified genus of Sutterellaceae are associated with an increased risk of the disease, while the unnamed genus of Lachnospiraceae, Rothia, the unnamed genus of Erysipelotrichaceae, Faecalibacterium, and Finegoldia are related to a reduced risk. Future studies are needed to elucidate the specific mechanisms by which these specific bacterial groups affect pyogenic arthritis.
Collapse
Affiliation(s)
- Boliang Bai
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Longfei Luo
- Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Feng Yao
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Qian Sun
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Xingguang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wen Zheng
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Lang Jiang
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Xiaodong Wang
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| | - Guanghao Su
- Department of Orthopedics, Affiliated Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Cuevas-Martínez R, González-Chávez SA, Bermúdez M, Salas-Leiva JS, Vázquez-Olvera G, Hinojos-Gallardo LC, Chaparro-Barrera E, Pacheco-Silva C, Romero-Sánchez C, Villegas-Mercado CE, Pacheco-Tena C. Intermittent fasting reduces inflammation and joint damage in a murine model of rheumatoid arthritis: insights from transcriptomic and metagenomic analyses. BMC Rheumatol 2024; 8:64. [PMID: 39587696 PMCID: PMC11587710 DOI: 10.1186/s41927-024-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Intermittent fasting (IF) has shown benefits in various pathological conditions. Although its anti-inflammatory potential has been recognized, its effects on the mechanism underlying rheumatoid arthritis (RA) remain insufficiently characterized. This study aimed to investigate the effects of IF in a murine model of RA. METHODS Collagen-induced arthritis (CIA) was developed in sixteen male DBA/1 mice, randomly assigned to two groups, with one undergoing IF every other day for four weeks. The effects of IF on joint inflammation and remodeling were evaluated clinically, histologically, and through tomography. Transcriptomic changes were characterized using expression microarrays, validated by RT-qPCR, and confirmed by immunohistochemistry. Additionally, modifications in gut microbiota were assessed through 16 S sequencing. RESULTS Mice subjected to IF significantly reduced the incidence and severity of clinical arthritis. Histological and radiographic assessments confirmed a decrease in inflammation and joint damage. Transcriptomic analysis revealed that IF led to the upregulation of 364 genes and the downregulation of 543 genes, with notable reductions in inflammatory signaling pathways associated with RA-related genes, including Cd72, Cd79a, Ifna, Il33, and Bglap 2. Notably, IL33 emerged as a pivotal mediator in the inflammatory processes mitigated by fasting. Key regulators associated with IF effects, such as CEBPA, FOXO1, HIF1A, PPARG, and PPARA, were identified, indicating a complex interplay between metabolic and inflammatory pathways. Furthermore, differential expression of microRNAs and lncRNAs, including miR-15b, miR-103-2, miR-302a, miR-6985, and miR- 5624, was observed. Metagenomic analysis indicated that IF enhanced the abundance and diversity of the gut microbiome, explicitly promoting anti-inflammatory bacterial populations, notably within the genus Ruminococcaceae. CONCLUSION Our findings suggest that IF exerts significant anti-inflammatory and immunoregulatory effects in the context of CIA. Given its non-risky nature, further investigation into the potential benefits of IF in patients with RA is warranted. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Rubén Cuevas-Martínez
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico
| | - Susana Aideé González-Chávez
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico.
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | - Eduardo Chaparro-Barrera
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico
| | - César Pacheco-Silva
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico
| | - Consuelo Romero-Sánchez
- Cellular and Molecular Immunology Group (INMUBO), School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | | | - César Pacheco-Tena
- PABIOM Laboratory, Faculty of Medicine and Biomedical Sciences, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, CP, 31125, Mexico.
| |
Collapse
|
4
|
Huang K, Cai H. The interplay between osteoarthritis and osteoporosis: Mechanisms, implications, and treatment considerations - A narrative review. Exp Gerontol 2024; 197:112614. [PMID: 39442896 DOI: 10.1016/j.exger.2024.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
This comprehensive review examines the relationship between osteoarthritis (OA) and osteoporosis (OP), two common disorders in the elderly. OA involves joint cartilage degeneration and pain, while OP leads to fractures due to reduced bone mass. Despite different pathologies, both conditions share risk factors such as age and genetics. Studies reveal mixed results: some show higher bone mineral density (BMD) in OA patients, suggesting an inverse relationship, while others find no significant link. Proposed mechanisms include mechanical loading, bone remodeling, and inflammation. Clinical strategies focus on maintaining bone health in OA and monitoring joint health in OP, with treatments like bisphosphonates and exercise. Understanding these interactions is crucial for developing integrated treatments to improve patient outcomes and quality of life. Further research is needed to clarify these complex mechanisms.
Collapse
Affiliation(s)
- Kai Huang
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Haili Cai
- The 903rd Hospital of People's Liberation Army, Hangzhou 310013, China.
| |
Collapse
|
5
|
Elsawy NA, Ibrahiem AH, Younis GA, Meheissen MA, Abdel-Fattah YH. Microbiome and Femoral Cartilage Thickness in Knee Osteoarthritis: Is There a Link? Cartilage 2024:19476035241276852. [PMID: 39235213 PMCID: PMC11569570 DOI: 10.1177/19476035241276852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE To assess the relation between microbiome and lipopolysaccharide (LPS), in the blood and synovial fluid (SF) with femoral cartilage thickness (FCT) measured by ultrasound (US) in knee osteoarthritis (KOA) patients. METHODS This cross-sectional study included 40 primary KOA patients recruited between September 2022 and June 2023. Age, gender, and body mass index (BMI) were recorded. Patients underwent full clinical examination, standing plain x-ray of the knee joint and knee US examination to measure medial, intercondylar, and lateral FCT. Microbiomes (specific bacterial phyla) were detected by real-time polymerase chain reaction and LPS levels were measured by enzyme-linked immunosorbent assay kit in the patients' serum and SF. RESULTS The patient's age ranged from 43 to 72 years. Most patients were females (72.5%), with a mean BMI of 35.8 ± 6.21 kg/m2. The mean medial, intercondylar, and lateral FCT were less than cut-off values. All 40 (100%) patients showed positive bacterial deoxyribonucleic acid (16S ribosomal RNA) in both blood and SF samples. Firmicutes was the most abundant in patients' blood (48.49%) and SF (63.59%). The mean serum LPS level was significantly higher compared to mean SF LPS (t =4.702, P < 0.001). There was a statistically significant negative correlation between lateral FCT and Firmicutes relative abundance in both patients' blood and SF. CONCLUSION Microbiome and LPS are present in the blood and SF of primary KOA patients. Microbiome (Firmicutes) was associated with decreased lateral FCT. This might provide a potential link between both systemic and local microbiomes and cartilage affection in KOA patients.
Collapse
Affiliation(s)
- Noha Abdelhalim Elsawy
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aya Hanafy Ibrahiem
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gihan Abdellatif Younis
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa Ahmed Meheissen
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yousra Hisham Abdel-Fattah
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Liu W, Li C, Xie W, Fan Y, Zhang X, Wang Y, Li L, Zhang Z. The signature of the gut microbiota associated with psoriatic arthritis revealed by metagenomics. Ther Adv Musculoskelet Dis 2024; 16:1759720X241266720. [PMID: 39131798 PMCID: PMC11316960 DOI: 10.1177/1759720x241266720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/20/2024] [Indexed: 08/13/2024] Open
Abstract
Background Gut microbiota is involved in the development of psoriatic arthritis (PsA), but until now, there has been a lack of understanding of the PsA host-bacteria interaction. Objectives To reveal the labels of gut microbiota in PsA patients and the species and functions related to disease activity. Design Observational research (cross-sectional) with an exploratory nature. Methods Metagenomics sequencing was used to analyze stool samples from 20 treatment-naïve PsA patients and 10 age-matched healthy individuals. All samples were qualified for subsequent analysis. Results Compared with the healthy group, α-diversity was reduced in the PsA group, and β-diversity could distinguish the two groups. Two bacteria with high abundance and correlation with PsA disease activity were identified, Bacteroides sp. 3_1_19 and Blautia AF 14-40. In different functions, K07114 (calcium-activated chloride channel (CaCC) homolog) showed a positive correlation with PsA disease activity (disease activity in psoriatic arthritis, DAPSA) and Tet32 (an antibiotic-resistant gene), and carbohydrate-binding module family 50 was negatively correlated with erythrocyte sedimentation rate. A bacterial co-expression network associated with DAPSA was constructed. The network was centered on the bacteria in the Bacteroides genus, which formed a closely related network and were positively correlated with DAPSA. As another core of the network, K07114 was closely related to multiple bacteria in the Bacteroides genus and is also positively correlated with disease activity. Conclusion The network composed of Bacteroides is associated with PsA disease activity, and its therapeutic value needs to be further explored. CaCCs may be a key channel for the interaction between Bacteroides and PsA-host.
Collapse
Affiliation(s)
- Wei Liu
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Chunyan Li
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Xiaohui Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Yu Wang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Lei Li
- Department of Gastroenterology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No. 8, Xishiku Street, West District, Beijing 100034, China
| |
Collapse
|
7
|
Ermencheva P, Kotov G, Shumnalieva R, Velikova T, Monov S. Exploring the Role of the Microbiome in Rheumatoid Arthritis-A Critical Review. Microorganisms 2024; 12:1387. [PMID: 39065155 PMCID: PMC11278530 DOI: 10.3390/microorganisms12071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune rheumatic disease characterized by synovial joint inflammation with subsequent destruction as well as systemic manifestation, leading to impaired mobility and impaired quality of life. The etiopathogenesis of RA is still unknown, with genetic, epigenetic and environmental factors (incl. tobacco smoking) contributing to disease susceptibility. The link between genetic factors like "shared epitope alleles" and the development of RA is well known. However, why only some carriers have a break in self-tolerance and develop autoimmunity still needs to be clarified. The presence of autoantibodies in patients' serum months to years prior to the onset of clinical manifestations of RA has moved the focus to possible epigenetic factors, including environmental triggers that could contribute to the initiation and perpetuation of the inflammatory reaction in RA. Over the past several years, the role of microorganisms at mucosal sites (i.e., microbiome) has emerged as an essential mediator of inflammation in RA. An increasing number of studies have revealed the microbial role in the immunopathogenesis of autoimmune rheumatic diseases. Interaction between the host immune system and microbiota initiates loss of immunological tolerance and autoimmunity. The alteration in microbiome composition, the so-called dysbiosis, is associated with an increasing number of diseases. Immune dysfunction caused by dysbiosis triggers and sustains chronic inflammation. This review aims to provide a critical summary of the literature findings related to the hypothesis of a reciprocal relation between the microbiome and the immune system. Available data from studies reveal the pivotal role of the microbiome in RA pathogenesis.
Collapse
Affiliation(s)
- Plamena Ermencheva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Russka Shumnalieva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Simeon Monov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
| |
Collapse
|