1
|
Sambarey A, Smith K, Chung C, Arora HS, Yang Z, Agarwal PP, Chandrasekaran S. Integrative analysis of multimodal patient data identifies personalized predictors of tuberculosis treatment prognosis. iScience 2024; 27:109025. [PMID: 38357663 PMCID: PMC10865408 DOI: 10.1016/j.isci.2024.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Tuberculosis (TB) afflicted 10.6 million people in 2021, and its global burden is increasing due to multidrug-resistant TB (MDR-TB) and extensively resistant TB (XDR-TB). Here, we analyze multi-domain information from 5,060 TB patients spanning 10 countries with high burden of MDR-TB from the NIAID TB Portals database to determine predictors of TB treatment outcome. Our analysis revealed significant associations between radiological, microbiological, therapeutic, and demographic data modalities. Our machine learning model, built with 203 features across modalities outperforms models built using each modality alone in predicting treatment outcomes, with an accuracy of 83% and area under the curve of 0.84. Notably, our analysis revealed that the drug regimens Bedaquiline-Clofazimine-Cycloserine-Levofloxacin-Linezolid and Bedaquiline-Clofazimine-Linezolid-Moxifloxacin were associated with treatment success and failure, respectively, for MDR non-XDR-TB. Drug combinations predicted to be synergistic by the INDIGO algorithm performed better than antagonistic combinations. Our prioritized set of features predictive of treatment outcomes can ultimately guide the personalized clinical management of TB.
Collapse
Affiliation(s)
- Awanti Sambarey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kirk Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carolina Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harkirat Singh Arora
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhenhua Yang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Prachi P. Agarwal
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Koul A, Bawa RK, Kumar Y. Artificial Intelligence Techniques to Predict the Airway Disorders Illness: A Systematic Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 30:831-864. [PMID: 36189431 PMCID: PMC9516534 DOI: 10.1007/s11831-022-09818-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Airway disease is a major healthcare issue that causes at least 3 million fatalities every year. It is also considered one of the foremost causes of death all around the globe by 2030. Numerous studies have been undertaken to demonstrate the latest advances in artificial intelligence algorithms to assist in identifying and classifying these diseases. This comprehensive review aims to summarise the state-of-the-art machine and deep learning-based systems for detecting airway disorders, envisage the trends of the recent work in this domain, and analyze the difficulties and potential future paths. This systematic literature review includes the study of one hundred fifty-five articles on airway diseases such as cystic fibrosis, emphysema, lung cancer, Mesothelioma, covid-19, pneumoconiosis, asthma, pulmonary edema, tuberculosis, pulmonary embolism as well as highlights the automated learning techniques to predict them. The study concludes with a discussion and challenges about expanding the efficiency and machine and deep learning-assisted airway disease detection applications.
Collapse
Affiliation(s)
- Apeksha Koul
- Department of Computer Science and Engineering, Punjabi University, Patiala, Punjab India
| | - Rajesh K. Bawa
- Department of Computer Science, Punjabi University, Patiala, Punjab India
| | - Yogesh Kumar
- Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| |
Collapse
|
3
|
Sambarey A, Smith K, Chung C, Arora HS, Yang Z, Agarwal P, Chandrasekaran S. Integrative analysis of clinical health records, imaging and pathogen genomics identifies personalized predictors of disease prognosis in tuberculosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.07.20.22277862. [PMID: 35898335 PMCID: PMC9327630 DOI: 10.1101/2022.07.20.22277862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tuberculosis (TB) afflicts over 10 million people every year and its global burden is projected to increase dramatically due to multidrug-resistant TB (MDR-TB). The Covid-19 pandemic has resulted in reduced access to TB diagnosis and treatment, reversing decades of progress in disease management globally. It is thus crucial to analyze real-world multi-domain information from patient health records to determine personalized predictors of TB treatment outcome and drug resistance. We conduct a retrospective analysis on electronic health records of 5060 TB patients spanning 10 countries with high burden of MDR-TB including Ukraine, Moldova, Belarus and India available on the NIAID-TB portals database. We analyze over 200 features across multiple host and pathogen modalities representing patient social demographics, disease presentations as seen in cChest X rays and CT scans, and genomic records with drug susceptibility features of the pathogen strain from each patient. Our machine learning model, built with diverse data modalities outperforms models built using each modality alone in predicting treatment outcomes, with an accuracy of 81% and AUC of 0.768. We determine robust predictors across countries that are associated with unsuccessful treatmentclinical outcomes, and validate our predictions on new patient data from TB Portals. Our analysis of drug regimens and drug interactions suggests that synergistic drug combinations and those containing the drugs Bedaquiline, Levofloxacin, Clofazimine and Amoxicillin see more success in treating MDR and XDR TB. Features identified via chest imaging such as percentage of abnormal volume, size of lung cavitation and bronchial obstruction are associated significantly with pathogen genomic attributes of drug resistance. Increased disease severity was also observed in patients with lower BMI and with comorbidities. Our integrated multi-modal analysis thus revealed significant associations between radiological, microbiological, therapeutic, and demographic data modalities, providing a deeper understanding of personalized responses to aid in the clinical management of TB.
Collapse
Affiliation(s)
| | - Kirk Smith
- Chemical BIology, University of Michigan
| | | | | | | | | | | |
Collapse
|
4
|
Estevez M, Benedum CM, Jiang C, Cohen AB, Phadke S, Sarkar S, Bozkurt S. Considerations for the Use of Machine Learning Extracted Real-World Data to Support Evidence Generation: A Research-Centric Evaluation Framework. Cancers (Basel) 2022; 14:cancers14133063. [PMID: 35804834 PMCID: PMC9264846 DOI: 10.3390/cancers14133063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
A vast amount of real-world data, such as pathology reports and clinical notes, are captured as unstructured text in electronic health records (EHRs). However, this information is both difficult and costly to extract through human abstraction, especially when scaling to large datasets is needed. Fortunately, Natural Language Processing (NLP) and Machine Learning (ML) techniques provide promising solutions for a variety of information extraction tasks such as identifying a group of patients who have a specific diagnosis, share common characteristics, or show progression of a disease. However, using these ML-extracted data for research still introduces unique challenges in assessing validity and generalizability to different cohorts of interest. In order to enable effective and accurate use of ML-extracted real-world data (RWD) to support research and real-world evidence generation, we propose a research-centric evaluation framework for model developers, ML-extracted data users and other RWD stakeholders. This framework covers the fundamentals of evaluating RWD produced using ML methods to maximize the use of EHR data for research purposes.
Collapse
Affiliation(s)
- Melissa Estevez
- Flatiron Health, Inc., 233 Spring Street, New York, NY 10013, USA; (M.E.); (C.M.B.); (C.J.); (A.B.C.); (S.P.); (S.S.)
| | - Corey M. Benedum
- Flatiron Health, Inc., 233 Spring Street, New York, NY 10013, USA; (M.E.); (C.M.B.); (C.J.); (A.B.C.); (S.P.); (S.S.)
| | - Chengsheng Jiang
- Flatiron Health, Inc., 233 Spring Street, New York, NY 10013, USA; (M.E.); (C.M.B.); (C.J.); (A.B.C.); (S.P.); (S.S.)
| | - Aaron B. Cohen
- Flatiron Health, Inc., 233 Spring Street, New York, NY 10013, USA; (M.E.); (C.M.B.); (C.J.); (A.B.C.); (S.P.); (S.S.)
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sharang Phadke
- Flatiron Health, Inc., 233 Spring Street, New York, NY 10013, USA; (M.E.); (C.M.B.); (C.J.); (A.B.C.); (S.P.); (S.S.)
| | - Somnath Sarkar
- Flatiron Health, Inc., 233 Spring Street, New York, NY 10013, USA; (M.E.); (C.M.B.); (C.J.); (A.B.C.); (S.P.); (S.S.)
| | - Selen Bozkurt
- Flatiron Health, Inc., 233 Spring Street, New York, NY 10013, USA; (M.E.); (C.M.B.); (C.J.); (A.B.C.); (S.P.); (S.S.)
- Correspondence:
| |
Collapse
|
5
|
Tuberculosis Disease Diagnosis Based on an Optimized Machine Learning Model. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8950243. [PMID: 35494520 PMCID: PMC9041161 DOI: 10.1155/2022/8950243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Computer science plays an important role in modern dynamic health systems. Given the collaborative nature of the diagnostic process, computer technology provides important services to healthcare professionals and organizations, as well as to patients and their families, researchers, and decision-makers. Thus, any innovations that improve the diagnostic process while maintaining quality and safety are crucial to the development of the healthcare field. Many diseases can be tentatively diagnosed during their initial stages. In this study, all developed techniques were applied to tuberculosis (TB). Thus, we propose an optimized machine learning-based model that extracts optimal texture features from TB-related images and selects the hyper-parameters of the classifiers. Increasing the accuracy rate and minimizing the number of characteristics extracted are our goals. In other words, this is a multitask optimization issue. A genetic algorithm (GA) is used to choose the best features, which are then fed into a support vector machine (SVM) classifier. Using the ImageCLEF 2020 data set, we conducted experiments using the proposed approach and achieved significantly higher accuracy and better outcomes in comparison with the state-of-the-art works. The obtained experimental results highlight the efficiency of modified SVM classifier compared with other standard ones.
Collapse
|